Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nature ; 527(7579): 459-65, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26580012

ABSTRACT

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Subject(s)
Chordata, Nonvertebrate/genetics , Evolution, Molecular , Genome/genetics , Animals , Chordata, Nonvertebrate/classification , Conserved Sequence/genetics , Echinodermata/classification , Echinodermata/genetics , Multigene Family/genetics , Phylogeny , Signal Transduction , Synteny/genetics , Transforming Growth Factor beta
2.
BMC Biol ; 18(1): 142, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33070780

ABSTRACT

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Subject(s)
Genome, Insect , Life History Traits , Thysanoptera/physiology , Transcriptome , Animals , Crops, Agricultural , Feeding Behavior , Food Chain , Immunity, Innate/genetics , Perception , Phylogeny , Reproduction/genetics , Thysanoptera/genetics , Thysanoptera/immunology
4.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171258

ABSTRACT

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Subject(s)
Heteroptera/genetics , Insect Proteins/genetics , Insecticide Resistance , Whole Genome Sequencing/methods , Animals , Ecosystem , Gene Transfer, Horizontal , Genome Size , Heteroptera/classification , Introduced Species , Phylogeny
5.
Nature ; 513(7517): 195-201, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25209798

ABSTRACT

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Subject(s)
Genome/genetics , Hylobates/classification , Hylobates/genetics , Karyotype , Phylogeny , Animals , Evolution, Molecular , Hominidae/classification , Hominidae/genetics , Humans , Molecular Sequence Data , Retroelements/genetics , Selection, Genetic , Transcription Termination, Genetic
6.
BMC Biol ; 16(1): 54, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29776407

ABSTRACT

BACKGROUND: Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. RESULTS: We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. CONCLUSIONS: The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control.


Subject(s)
Evolution, Molecular , Pest Control, Biological , Wasps/classification , Wasps/genetics , Animals , Genomics , Moths/parasitology , Phylogeny , Wasps/pathogenicity , Whole Genome Sequencing/methods
7.
BMC Genomics ; 19(1): 832, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30463532

ABSTRACT

BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.


Subject(s)
Genome , Heteroptera/genetics , Heteroptera/physiology , Insect Proteins/genetics , Adaptation, Physiological , Animals , Evolution, Molecular , Genomics , Heteroptera/classification , Phenotype , Phylogeny
8.
Mol Biol Evol ; 34(8): 1838-1862, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28460028

ABSTRACT

Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.


Subject(s)
Arthropods/genetics , Receptors, Odorant/genetics , Animals , Chemoreceptor Cells/physiology , Copepoda/genetics , Crustacea/genetics , Databases, Nucleic Acid , Evolution, Molecular , Genome/genetics , Insecta/genetics , Multigene Family/genetics , Phylogeny
9.
Environ Sci Technol ; 52(10): 6009-6022, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29634279

ABSTRACT

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Ecotoxicology , Geologic Sediments , North America , Toxicity Tests
10.
Nature ; 482(7384): 173-8, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22318601

ABSTRACT

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.


Subject(s)
Drosophila melanogaster/genetics , Genome-Wide Association Study , Genomics , Quantitative Trait Loci/genetics , Alleles , Animals , Centromere/genetics , Chromosomes, Insect/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics , Selection, Genetic/genetics , Starvation/genetics , Telomere/genetics , X Chromosome/genetics
11.
BMC Biol ; 15(1): 62, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28756775

ABSTRACT

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Subject(s)
Evolution, Molecular , Gene Duplication , Genome , Spiders/genetics , Animals , Female , Male , Synteny
12.
Genome Res ; 24(7): 1209-23, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24985915

ABSTRACT

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.


Subject(s)
Computational Biology/methods , Drosophila melanogaster/genetics , Gene Expression Profiling , Molecular Sequence Annotation , Transcriptome , Animals , Cluster Analysis , Drosophila melanogaster/classification , Evolution, Molecular , Exons , Female , Genome, Insect , Humans , Male , Nucleotide Motifs , Phylogeny , Position-Specific Scoring Matrices , Promoter Regions, Genetic , RNA Editing , RNA Splice Sites , RNA Splicing , Reproducibility of Results , Transcription Initiation Site
13.
Genome Biol Evol ; 12(7): 1099-1188, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32442304

ABSTRACT

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.


Subject(s)
Genetic Speciation , Genome, Insect , Host-Parasite Interactions/genetics , Hymenoptera/genetics , Amino Acid Sequence , Animals , Conserved Sequence , DNA Transposable Elements , Female , Gene Dosage , Glycoproteins/genetics , Herbivory/genetics , Immunity/genetics , Insect Proteins/genetics , Male , Multigene Family , Receptors, Odorant/genetics , Social Behavior , Vision, Ocular/genetics
14.
Genome Biol ; 21(1): 15, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31969194

ABSTRACT

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Subject(s)
Arthropods/genetics , Evolution, Molecular , Animals , Arthropods/classification , DNA Methylation , Genetic Speciation , Genetic Variation , Phylogeny
15.
Nat Ecol Evol ; 2(3): 557-566, 2018 03.
Article in English | MEDLINE | ID: mdl-29403074

ABSTRACT

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.


Subject(s)
Blattellidae/genetics , Evolution, Molecular , Genome , Isoptera/genetics , Social Behavior , Animals , Biological Evolution , Blattellidae/physiology , Isoptera/physiology , Phylogeny
16.
BMC Microbiol ; 7: 99, 2007 Nov 06.
Article in English | MEDLINE | ID: mdl-17986343

ABSTRACT

BACKGROUND: Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. RESULTS: We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. CONCLUSION: USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


Subject(s)
Staphylococcal Infections/epidemiology , Staphylococcus aureus/genetics , Adolescent , Anti-Bacterial Agents/pharmacology , Base Sequence , Genomic Islands/genetics , Humans , Hydrolases/genetics , Methicillin Resistance , Molecular Epidemiology , Molecular Sequence Data , Open Reading Frames/genetics , Plasmids/genetics , Polymorphism, Genetic , Staphylococcus aureus/drug effects , United States/epidemiology
17.
Genome Biol ; 17(1): 192, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27659211

ABSTRACT

BACKGROUND: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. RESULTS: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. CONCLUSIONS: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.


Subject(s)
Biological Evolution , Ceratitis capitata/genetics , Genome, Insect , Molecular Sequence Annotation , Animals , Animals, Genetically Modified/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Introduced Species , Pest Control, Biological
18.
Cell Rep ; 14(4): 907-919, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26804919

ABSTRACT

The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of ß-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis.


Subject(s)
Adenocarcinoma/genetics , DNA-Binding Proteins/genetics , Duodenal Neoplasms/genetics , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/genetics , Wnt Signaling Pathway , Adenocarcinoma/metabolism , Ampulla of Vater/pathology , Base Sequence , Duodenal Neoplasms/metabolism , Genomic Instability , Humans , Microsatellite Repeats , Molecular Sequence Data , Pancreatic Neoplasms/metabolism
19.
Genome Biol ; 17(1): 227, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27832824

ABSTRACT

BACKGROUND: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. RESULTS: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. CONCLUSIONS: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.


Subject(s)
Coleoptera/genetics , Genome, Insect/genetics , Sequence Analysis, DNA , Animals , Coleoptera/pathogenicity , Evolution, Molecular , Gene Transfer, Horizontal , Host-Parasite Interactions/genetics , Introduced Species , Larva , Trees/parasitology
20.
Appl Immunohistochem Mol Morphol ; 23(7): 499-505, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25517865

ABSTRACT

To investigate the prognostic and diagnostic value of ERG immunohistochemistry (IHC) in prostate needle biopsy when combined with AMACR-CK5/6. ERG IHC was assessed in 119 consecutive prostate needle biopsies where the dual-stain AMACR-CK5/6 IHC was ordered and in 16 cases with a Gleason score (GS) ≥7. IHC results were evaluated in prostate carcinoma (PCA), high-grade prostatic intraepithelial neoplasia (HGPIN), HGPIN with adjacent atypical glands (PINATYP), atypical/suspicious (ASAP) foci, and benign PCA mimickers. GS, HGPIN, extraprostatic extension, perineural invasion, bilateralism of PCA, largest percent of core, and the overall percent of tissue involved by PCA were recorded. ERG was detected in 36% of PCA, 27% of HGPIN, 13% of ATYP/PINATYP, and none of benign mimickers. ERG-positive HGPIN was strongly associated with ERG-positive PCA in the same core compared with ERG-negative HGPIN (P<0.0001). Positive ERG expression in PCA was inversely related to GS and showed trends toward association with higher volume and bilateral disease. ERG was more specific for PCA than AMACR (0.87 vs. 0.23), but less sensitive (0.36 vs. 0.95). In conclusion, ERG IHC is of limited additional diagnostic value when added to AMACR and CK5/6. ERG expression is inversely related to GS and is associated with bilateral involvement and higher PCA tumor volume. ERG-positive HGPIN is strongly associated with the presence of PCA in the same core. Studies investigating the prognostic value of ERG in HGPIN should be implemented to address whether patients with ERG-positive HGPIN are at increased risk for subsequent PCA development.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Trans-Activators/biosynthesis , Biopsy, Needle , Humans , Male , Transcriptional Regulator ERG
SELECTION OF CITATIONS
SEARCH DETAIL