Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuroepidemiology ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815551

ABSTRACT

INTRODUCTION: Long-term exposure to air pollutants is associated with an increased risk of Alzheimer's disease and mild cognitive impairment. Therefore, we investigated the association between long-term air pollution exposure and changes in neuroimaging markers. METHODS: In this longitudinal study, we studied a prospective cohort of 361 adults residing in four cities in the Republic of Korea. Long-term concentrations of particulate matter with aerodynamic diameters of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2) at residential addresses were estimated. Neuroimaging markers (cortical thickness and subcortical volume) were obtained from brain magnetic resonance images at baseline (August 2014 to March 2017) and at the 3-year follow-up (until September 2020). Linear mixed-effects models were used, adjusting for covariates. RESULTS: A 10-µg/m3 increase in PM10 was associated with reduced whole-brain mean (ß= -0.45, standard error (SE)= 0.10, P< 0.001), frontal (ß= -0.53, SE= 0.11; P< 0.001) and temporal thicknesses (ß= -0.37, SE= 0.12; P= 0.002). A 10-ppb increase in NO2 was associated with a decline in the whole brain mean cortical thickness (ß= -0.23, SE= 0.05; P< 0.001), frontal (ß= -0.25, SE= 0.05; P< 0.001), parietal (ß= -0.12, SE= 0.05; P= 0.025), and temporal thicknesses (ß= -0.19, SE= 0.06; P= 0.001). Subcortical structures associated with air pollutants include the thalamus volume. CONCLUSIONS: Long-term exposure to PM10 and NO2 may lead to cortical thinning in adults.

2.
J Neurooncol ; 168(2): 239-247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700610

ABSTRACT

PURPOSE: There is lack of comprehensive analysis evaluating the impact of clinical, molecular, imaging, and surgical data on survival of patients with gliomatosis cerebri (GC). This study aimed to investigate prognostic factors of GC in adult-type diffuse glioma patients. METHODS: Retrospective chart and imaging review was performed in 99 GC patients from adult-type diffuse glioma (among 1,211 patients; 6 oligodendroglioma, 16 IDH-mutant astrocytoma, and 77 IDH-wildtype glioblastoma) from a single institution between 2005 and 2021. Predictors of overall survival (OS) of entire patients and IDH-wildtype glioblastoma patients were determined. RESULTS: The median OS was 16.7 months (95% confidence interval [CI] 14.2-22.2) in entire patients and 14.3 months (95% CI 12.2-61.9) in IDH-wildtype glioblastoma patients. In entire patients, KPS (hazard ratio [HR] = 0.98, P = 0.004), no 1p/19q codeletion (HR = 10.75, P = 0.019), MGMTp methylation (HR = 0.54, P = 0.028), and hemorrhage (HR = 3.45, P = 0.001) were independent prognostic factors on multivariable analysis. In IDH-wildtype glioblastoma patients, KPS (HR = 2.24, P = 0.075) was the only independent prognostic factor on multivariable analysis. In subgroup of IDH-wildtype glioblastoma with CE tumors, total resection of CE tumor did not remain as a significant prognostic factor (HR = 1.13, P = 0.685). CONCLUSIONS: The prognosis of GC patients is determined by its underlying molecular type and patient performance status. Compared with diffuse glioma without GC, aggressive surgery of CE tumor in GC patients does not improve survival.


Subject(s)
Brain Neoplasms , Isocitrate Dehydrogenase , Neoplasms, Neuroepithelial , Humans , Male , Female , Middle Aged , Prognosis , Neoplasms, Neuroepithelial/pathology , Neoplasms, Neuroepithelial/mortality , Neoplasms, Neuroepithelial/genetics , Retrospective Studies , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/diagnosis , Adult , Aged , Isocitrate Dehydrogenase/genetics , Glioma/pathology , Glioma/mortality , Glioma/genetics , Glioma/surgery , Glioma/diagnosis , Young Adult , Survival Rate , Mutation , Follow-Up Studies
3.
Eur Radiol ; 34(2): 1376-1387, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37608093

ABSTRACT

OBJECTIVES: Extent of resection (EOR) of contrast-enhancing (CE) and non-enhancing (NE) tumors may have different impacts on survival according to types of adult-type diffuse gliomas in the molecular era. This study aimed to evaluate the impact of EOR of CE and NE tumors in glioma according to the 2021 World Health Organization classification. METHODS: This retrospective study included 1193 adult-type diffuse glioma patients diagnosed between 2001 and 2021 (183 oligodendroglioma, 211 isocitrate dehydrogenase [IDH]-mutant astrocytoma, and 799 IDH-wildtype glioblastoma patients) from a single institution. Patients had complete information on IDH mutation, 1p/19q codeletion, and O6-methylguanine-methyltransferase (MGMT) status. Cox survival analyses were performed within each glioma type to assess predictors of overall survival, including clinical, imaging data, histological grade, MGMT status, adjuvant treatment, and EOR of CE and NE tumors. Subgroup analyses were performed in patients with CE tumor. RESULTS: Among 1193 patients, 935 (78.4%) patients had CE tumors. In entire oligodendrogliomas, gross total resection (GTR) of NE tumor was not associated with survival (HR = 0.56, p = 0.223). In 86 (47.0%) oligodendroglioma patients with CE tumor, GTR of CE tumor was the only independent predictor of survival (HR = 0.16, p = 0.004) in multivariable analysis. GTR of CE and NE tumors was independently associated with better survival in IDH-mutant astrocytoma and IDH-wildtype glioblastoma (all ps < 0.05). CONCLUSIONS: GTR of both CE and NE tumors may significantly improve survival within IDH-mutant astrocytomas and IDH-wildtype glioblastomas. In oligodendrogliomas, the EOR of CE tumor may be crucial in survival; aggressive GTR of NE tumor may be unnecessary, whereas GTR of the CE tumor is recommended. CLINICAL RELEVANCE STATEMENT: Surgical strategies on contrast-enhancing (CE) and non-enhancing (NE) tumors should be reassessed considering the different survival outcomes after gross total resection depending on CE and NE tumors in the 2021 World Health Organization classification of adult-type diffuse gliomas. KEY POINTS: The survival impact of extent of resection of contrast-enhancing (CE) and non-enhancing (NE) tumors was evaluated in adult-type diffuse gliomas. Gross total resection of both CE and NE tumors may improve survival in isocitrate dehydrogenase (IDH)-mutant astrocytomas and IDH-wildtype glioblastomas, while only gross total resection of the CE tumor improves survival in oligodendrogliomas. Surgical strategies should be reconsidered according to types in adult-type diffuse gliomas.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Humans , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Retrospective Studies , Isocitrate Dehydrogenase/genetics , Glioma/diagnostic imaging , Glioma/genetics , Glioma/surgery , Mutation , World Health Organization
4.
Eur Radiol ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308679

ABSTRACT

OBJECTIVES: This study explores whether textural features from initial non-contrast CT scans of infarcted brain tissue are linked to hemorrhagic transformation susceptibility. MATERIALS AND METHODS: Stroke patients undergoing thrombolysis or thrombectomy from Jan 2012 to Jan 2022 were analyzed retrospectively. Hemorrhagic transformation was defined using follow-up magnetic resonance imaging. A total of 94 radiomic features were extracted from the infarcted tissue on initial NCCT scans. Patients were divided into training and test sets (7:3 ratio). Two models were developed with fivefold cross-validation: one incorporating first-order and textural radiomic features, and another using only textural radiomic features. A clinical model was also constructed using logistic regression with clinical variables, and test set validation was performed. RESULTS: Among 362 patients, 218 had hemorrhagic transformations. The LightGBM model with all radiomics features had the best performance, with an area under the receiver operating characteristic curve (AUROC) of 0.986 (95% confidence interval [CI], 0.971-1.000) on the test dataset. The ExtraTrees model performed best when textural features were employed, with an AUROC of 0.845 (95% CI, 0.774-0.916). Minimum, maximum, and ten percentile values were significant predictors of hemorrhagic transformation. The clinical model showed an AUROC of 0.544 (95% CI, 0.431-0.658). The performance of the radiomics models was significantly better than that of the clinical model on the test dataset (p < 0.001). CONCLUSIONS: The radiomics model can predict hemorrhagic transformation using NCCT in stroke patients. Low Hounsfield unit was a strong predictor of hemorrhagic transformation, while textural features alone can predict hemorrhagic transformation. CLINICAL RELEVANCE STATEMENT: Using radiomic features extracted from initial non-contrast computed tomography, early prediction of hemorrhagic transformation has the potential to improve patient care and outcomes by aiding in personalized treatment decision-making and early identification of at-risk patients. KEY POINTS: • Predicting hemorrhagic transformation following thrombolysis in stroke is challenging since multiple factors are associated. • Radiomics features of infarcted tissue on initial non-contrast CT are associated with hemorrhagic transformation. • Textural features on non-contrast CT are associated with the frailty of the infarcted tissue.

5.
Future Oncol ; : 1-10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38861311

ABSTRACT

Aim: To evaluate the performance of MRI-derived radiomic risk score (RRS) and PD-L1 expression to predict overall survival (OS) and progression-free survival (PFS) of patients with recurrent head and neck squamous cell carcinoma receiving nivolumab therapy. Materials & methods: Three hundred forty radiomic features from pretreatment MRI were used to construct the RRS. The integrated area under the receiver operating characteristic curve (iAUC) was calculated to evaluate the performance of the RRS and PD-L1. Results: The RRS showed iAUCs of 0.69 and 0.57 for OS and PFS, respectively. PD-L1 expression showed iAUCs of 0.61 and 0.62 for OS and PFS, respectively. Conclusion: RRS and PD-L1 potentially predict the OS and PFS of patients with recurrent head and neck squamous cell carcinoma receiving nivolumab therapy.


[Box: see text].

6.
Article in English | MEDLINE | ID: mdl-38953397

ABSTRACT

AIMS: The cerebellum is involved in higher-order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1-weighted magnetic resonance imaging (T1-MRI) of the cerebellum. METHODS: A total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1-MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability. RESULTS: We identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82-0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second-order size zone non-uniformity feature from the right lobule IX and first-order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia. CONCLUSION: The radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease-defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker-based decision-making in clinical practice.

7.
Hum Brain Mapp ; 44(8): 3232-3240, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36930038

ABSTRACT

The increased incidence of dilated perivascular spaces (dPVSs) visible on MRI has been observed with advancing age, but the relevance of PVS dilatation to normal aging across the lifespan has yet to be fully clarified. In the current study, we sought to find out the age dependence of dPVSs by exploring changes in different characteristics of PVS dilatation across a wide range of age. For 1220 healthy subjects aged between 18 and 100 years, PVSs were automatically segmented and characteristics of PVS dilatation were assessed in terms of the burden, location, and morphology of PVSs in the white matter (WM) and basal ganglia (BG). A machine learning model using the random forests method was constructed to estimate the subjects' age by employing the PVS features. The constructed machine learning model was able to estimate the age of the subjects with an error of 9.53 years on average (correlation = 0.875). The importance of the PVS features indicated the primary contribution of the burden of PVSs in the BG and the additional contribution of locational and morphological changes of PVSs, specifically peripheral extension and reduced linearity, in the WM to age estimation. Indeed, adding the PVS location or morphology features to the PVS burden features provided an improvement to the performance of age estimation. The age dependence of dPVSs in terms of such various characteristics of PVS dilatation in healthy subjects could provide a more comprehensive reference for detecting brain disease-related PVS dilatation.


Subject(s)
Glymphatic System , White Matter , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Dilatation , Aging , White Matter/diagnostic imaging , Basal Ganglia , Magnetic Resonance Imaging/methods
8.
J Neurol Neurosurg Psychiatry ; 94(12): 1047-1055, 2023 12.
Article in English | MEDLINE | ID: mdl-37399288

ABSTRACT

BACKGROUND: The choroid plexus (CP) is involved in the clearance of harmful metabolites from the brain, as a part of the glymphatic system. This study aimed to investigate the association between CP volume (CPV), nigrostriatal dopaminergic degeneration and motor outcomes in Parkinson's disease (PD). METHODS: We retrospectively searched drug-naïve patients with early-stage PD who underwent dopamine transporter (DAT) scanning and MRI. Automatic CP segmentation was performed, and the CPV was calculated. The relationship between CPV, DAT availability and Unified PD Rating Scale Part III (UPDRS-III) scores was assessed using multivariate linear regression. We performed longitudinal analyses to assess motor outcomes according to CPV. RESULTS: CPV was negatively associated with DAT availability in each striatal subregion (anterior caudate, ß=-0.134, p=0.012; posterior caudate, ß=-0.162, p=0.002; anterior putamen, ß=-0.133, p=0.024; posterior putamen, ß=-0.125, p=0.039; ventral putamen, ß=-0.125, p=0.035), except for the ventral striatum. CPV was positively associated with the UPDRS-III score even after adjusting for DAT availability in the posterior putamen (ß=0.121; p=0.035). A larger CPV was associated with the future development of freezing of gait in the Cox regression model (HR 1.539, p=0.027) and a more rapid increase in dopaminergic medication in the linear mixed model (CPV×time, p=0.037), but was not associated with the risk of developing levodopa-induced dyskinesia or wearing off. CONCLUSION: These findings suggest that CPV has the potential to serve as a biomarker for baseline and longitudinal motor disabilities in PD.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Retrospective Studies , Choroid Plexus/diagnostic imaging , Choroid Plexus/metabolism , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/metabolism , Dopamine/metabolism , Dopamine/therapeutic use , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism
9.
J Magn Reson Imaging ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37814782

ABSTRACT

BACKGROUND: The clinical presentation of juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures alone (GTCA) is similar, and MRI scans are often perceptually normal in both conditions making them challenging to differentiate. PURPOSE: To develop and validate an MRI-based radiomics model to accurately diagnose JME and GTCA, as well as to classify prognostic groups. STUDY TYPE: Retrospective. POPULATION: 164 patients (127 with JME and 37 with GTCA) patients (age 24.0 ± 9.6; 50% male), divided into training (n = 114) and test (n = 50) sets in a 7:3 ratio with the same proportion of JME and GTCA patients kept in both sets. FIELD STRENGTH/SEQUENCE: 3T; 3D T1-weighted spoiled gradient-echo. ASSESSMENT: A total of 17 region-of-interest in the brain were identified as having clinical evidence of association with JME and GTCA, from where 1581 radiomics features were extracted for each subject. Forty-eight machine-learning combinations of oversampling, feature selection, and classification algorithms were explored to develop an optimal radiomics model. The performance of the best radiomics models for diagnosis and for classification of the favorable outcome group were evaluated in the test set. STATISTICAL TESTS: Model performance measured using area under the curve (AUC) of receiver operating characteristic (ROC) curve. Shapley additive explanations (SHAP) analysis to estimate the contribution of each radiomics feature. RESULTS: The AUC (95% confidence interval) of the best radiomics models for diagnosis and for classification of favorable outcome group were 0.767 (0.591-0.943) and 0.717 (0.563-0.871), respectively. SHAP analysis revealed that the first-order and textural features of the caudate, cerebral white matter, thalamus proper, and putamen had the highest importance in the best radiomics model. CONCLUSION: The proposed MRI-based radiomics model demonstrated the potential to diagnose JME and GTCA, as well as to classify prognostic groups. MRI regions associated with JME, such as the basal ganglia, thalamus, and cerebral white matter, appeared to be important for constructing radiomics models. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.

10.
J Neurooncol ; 164(2): 341-351, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37689596

ABSTRACT

PURPOSE: To develop and validate a dynamic contrast-enhanced (DCE) MRI-based radiomics model to predict epidermal growth factor receptor (EGFR) amplification in patients with glioblastoma, isocitrate dehydrogenase (IDH) wildtype. METHODS: Patients with pathologically confirmed glioblastoma, IDH wildtype, from January 2015 to December 2020, with an EGFR amplification status, were included. Patients who did not undergo DCE or conventional brain MRI were excluded. Patients were categorized into training and test sets by a ratio of 7:3. DCE MRI data were used to generate volume transfer constant (Ktrans) and extracellular volume fraction (Ve) maps. Ktrans, Ve, and conventional MRI were then used to extract the radiomics features, from which the prediction models for EGFR amplification status were developed and validated. RESULTS: A total of 190 patients (mean age, 59.9; male, 55.3%), divided into training (n = 133) and test (n = 57) sets, were enrolled. In the test set, the radiomics model using the Ktrans map exhibited the highest area under the receiver operating characteristic curve (AUROC), 0.80 (95% confidence interval [CI], 0.65-0.95). The AUROC for the Ve map-based and conventional MRI-based models were 0.74 (95% CI, 0.58-0.90) and 0.76 (95% CI, 0.61-0.91). CONCLUSION: The DCE MRI-based radiomics model that predicts EGFR amplification in glioblastoma, IDH wildtype, was developed and validated. The MRI-based radiomics model using the Ktrans map has higher AUROC than conventional MRI.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Male , Middle Aged , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Magnetic Resonance Imaging , ErbB Receptors/genetics , Retrospective Studies
11.
J Neurooncol ; 162(1): 59-68, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36841906

ABSTRACT

PURPOSE: To comprehensively investigate prognostic factors, including clinical and molecular factors and treatment modalities, in adult glioma patients with leptomeningeal metastases (LM). METHODS: Total 226 patients with LM (from 2001 to 2021 among 1495 grade 2 to 4 glioma patients, 88.5% of LM patients being IDH-wildtype) with complete information on IDH mutation, 1p/19q codeletion, and MGMT promoter methylation status were enrolled. Predictors of overall survival (OS) of entire patients were determined by time-dependent Cox analysis, including clinical, molecular, and treatment data. Subgroup analyses were performed for patients with LM at initial diagnosis and LM diagnosed at recurrence (herein, initial and recurrent LM). Identical analyses were performed in IDH-wildtype glioblastoma patients. RESULTS: Median OS was 17.0 (IQR 9.7-67.1) months, with shorter median OS in initial LM than recurrent LM patients (12.2 vs 20.6 months, P < 0.001). In entire patients, chemotherapy and antiangiogenic therapy were predictors of longer OS, while male sex and initial LM were predictors of shorter OS. In initial LM, higher KPS, chemotherapy, and antiangiogenic therapy were predictors of longer OS, while male sex was a predictor of shorter OS. In recurrent LM, chemotherapy and longer interval between initial glioma and LM diagnoses were predictors of longer OS, while male sex was a predictor of shorter OS. A similar trend was observed in IDH-wildtype glioblastoma. CONCLUSION: Active chemotherapy and antiangiogenic therapy demonstrated survival benefit in glioma patients with LM. There is consistent female survival advantage, whereas longer interval between initial glioma diagnosis and LM development suggests longer OS in recurrent LM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Adult , Humans , Male , Female , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Mutation , Glioma/genetics , Glioma/therapy , Glioma/pathology , Isocitrate Dehydrogenase/genetics
12.
Eur Radiol ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37848774

ABSTRACT

OBJECTIVES: To develop and validate a multiparametric MRI-based radiomics model with optimal oversampling and machine learning techniques for predicting human papillomavirus (HPV) status in oropharyngeal squamous cell carcinoma (OPSCC). METHODS: This retrospective, multicenter study included consecutive patients with newly diagnosed and pathologically confirmed OPSCC between January 2017 and December 2020 (110 patients in the training set, 44 patients in the external validation set). A total of 293 radiomics features were extracted from three sequences (T2-weighted images [T2WI], contrast-enhanced T1-weighted images [CE-T1WI], and ADC). Combinations of three feature selection, five oversampling, and 12 machine learning techniques were evaluated to optimize its diagnostic performance. The area under the receiver operating characteristic curve (AUC) of the top five models was validated in the external validation set. RESULTS: A total of 154 patients (59.2 ± 9.1 years; 132 men [85.7%]) were included, and oversampling was employed to account for data imbalance between HPV-positive and HPV-negative OPSCC (86.4% [133/154] vs. 13.6% [21/154]). For the ADC radiomics model, the combination of random oversampling and ridge showed the highest diagnostic performance in the external validation set (AUC, 0.791; 95% CI, 0.775-0.808). The ADC radiomics model showed a higher trend in diagnostic performance compared to the radiomics model using CE-T1WI (AUC, 0.604; 95% CI, 0.590-0.618), T2WI (AUC, 0.695; 95% CI, 0.673-0.717), and a combination of both (AUC, 0.642; 95% CI, 0.626-0.657). CONCLUSIONS: The ADC radiomics model using random oversampling and ridge showed the highest diagnostic performance in predicting the HPV status of OPSCC in the external validation set. CLINICAL RELEVANCE STATEMENT: Among multiple sequences, the ADC radiomics model has a potential for generalizability and applicability in clinical practice. Exploring multiple oversampling and machine learning techniques was a valuable strategy for optimizing radiomics model performance. KEY POINTS: • Previous radiomics studies using multiparametric MRI were conducted at single centers without external validation and had unresolved data imbalances. • Among the ADC, CE-T1WI, and T2WI radiomics models and the ADC histogram models, the ADC radiomics model was the best-performing model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma. • The ADC radiomics model with the combination of random oversampling and ridge showed the highest diagnostic performance.

13.
Eur Radiol ; 33(9): 6124-6133, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37052658

ABSTRACT

OBJECTIVES: To establish a robust interpretable multiparametric deep learning (DL) model for automatic noninvasive grading of meningiomas along with segmentation. METHODS: In total, 257 patients with pathologically confirmed meningiomas (162 low-grade, 95 high-grade) who underwent a preoperative brain MRI, including T2-weighted (T2) and contrast-enhanced T1-weighted images (T1C), were included in the institutional training set. A two-stage DL grading model was constructed for segmentation and classification based on multiparametric three-dimensional U-net and ResNet. The models were validated in the external validation set consisting of 61 patients with meningiomas (46 low-grade, 15 high-grade). Relevance-weighted Class Activation Mapping (RCAM) method was used to interpret the DL features contributing to the prediction of the DL grading model. RESULTS: On external validation, the combined T1C and T2 model showed a Dice coefficient of 0.910 in segmentation and the highest performance for meningioma grading compared to the T2 or T1C only models, with an area under the curve (AUC) of 0.770 (95% confidence interval: 0.644-0.895) and accuracy, sensitivity, and specificity of 72.1%, 73.3%, and 71.7%, respectively. The AUC and accuracy of the combined DL grading model were higher than those of the human readers (AUCs of 0.675-0.690 and accuracies of 65.6-68.9%, respectively). The RCAM of the DL grading model showed activated maps at the surface regions of meningiomas indicating that the model recognized the features at the tumor margin for grading. CONCLUSIONS: An interpretable multiparametric DL model combining T1C and T2 can enable fully automatic grading of meningiomas along with segmentation. KEY POINTS: • The multiparametric DL model showed robustness in grading and segmentation on external validation. • The diagnostic performance of the combined DL grading model was higher than that of the human readers. • The RCAM interpreted that DL grading model recognized the meaningful features at the tumor margin for grading.


Subject(s)
Deep Learning , Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , Neoplasm Grading , Retrospective Studies , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology
14.
Eur Radiol ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37950080

ABSTRACT

OBJECTIVES: To develop and validate a deep learning model for predicting hemorrhagic transformation after endovascular thrombectomy using dual-energy computed tomography (CT). MATERIALS AND METHODS: This was a retrospective study from a prospective registry of acute ischemic stroke. Patients admitted between May 2019 and February 2023 who underwent endovascular thrombectomy for acute anterior circulation occlusions were enrolled. Hemorrhagic transformation was defined using follow-up magnetic resonance imaging or CT. The deep learning model was developed using post-thrombectomy dual-energy CT to predict hemorrhagic transformation within 72 h. Temporal validation was performed with patients who were admitted after July 2022. The deep learning model's performance was compared with a logistic regression model developed from clinical variables using the area under the receiver operating characteristic curve (AUC). RESULTS: Total of 202 patients (mean age 71.4 years ± 14.5 [standard deviation], 92 men) were included, with 109 (54.0%) patients having hemorrhagic transformation. The deep learning model performed consistently well, showing an average AUC of 0.867 (95% confidence interval [CI], 0.815-0.902) upon five-fold cross validation and AUC of 0.911 (95% CI, 0.774-1.000) with the test dataset. The clinical variable model showed an AUC of 0.775 (95% CI, 0.709-0.842) on the training dataset (p < 0.01) and AUC of 0.634 (95% CI, 0.385-0.883) on the test dataset (p = 0.06). CONCLUSION: A deep learning model was developed and validated for prediction of hemorrhagic transformation after endovascular thrombectomy in patients with acute stroke using dual-energy computed tomography. CLINICAL RELEVANCE STATEMENT: This study demonstrates that a convolutional neural network (CNN) can be utilized on dual-energy computed tomography (DECT) for the accurate prediction of hemorrhagic transformation after thrombectomy. The CNN achieves high performance without the need for region of interest drawing. KEY POINTS: • Iodine leakage on dual-energy CT after thrombectomy may be from blood-brain barrier disruption. • A convolutional neural network on post-thrombectomy dual-energy CT enables individualized prediction of hemorrhagic transformation. • Iodine leakage is an important predictor of hemorrhagic transformation following thrombectomy for ischemic stroke.

15.
Eur Radiol ; 33(11): 8017-8025, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37566271

ABSTRACT

OBJECTIVES: To evaluate the performance of natural language processing (NLP) models to predict isocitrate dehydrogenase (IDH) mutation status in diffuse glioma using routine MR radiology reports. MATERIALS AND METHODS: This retrospective, multi-center study included consecutive patients with diffuse glioma with known IDH mutation status from May 2009 to November 2021 whose initial MR radiology report was available prior to pathologic diagnosis. Five NLP models (long short-term memory [LSTM], bidirectional LSTM, bidirectional encoder representations from transformers [BERT], BERT graph convolutional network [GCN], BioBERT) were trained, and area under the receiver operating characteristic curve (AUC) was assessed to validate prediction of IDH mutation status in the internal and external validation sets. The performance of the best performing NLP model was compared with that of the human readers. RESULTS: A total of 1427 patients (mean age ± standard deviation, 54 ± 15; 779 men, 54.6%) with 720 patients in the training set, 180 patients in the internal validation set, and 527 patients in the external validation set were included. In the external validation set, BERT GCN showed the highest performance (AUC 0.85, 95% CI 0.81-0.89) in predicting IDH mutation status, which was higher than LSTM (AUC 0.77, 95% CI 0.72-0.81; p = .003) and BioBERT (AUC 0.81, 95% CI 0.76-0.85; p = .03). This was higher than that of a neuroradiologist (AUC 0.80, 95% CI 0.76-0.84; p = .005) and a neurosurgeon (AUC 0.79, 95% CI 0.76-0.84; p = .04). CONCLUSION: BERT GCN was externally validated to predict IDH mutation status in patients with diffuse glioma using routine MR radiology reports with superior or at least comparable performance to human reader. CLINICAL RELEVANCE STATEMENT: Natural language processing may be used to extract relevant information from routine radiology reports to predict cancer genotype and provide prognostic information that may aid in guiding treatment strategy and enabling personalized medicine. KEY POINTS: • A transformer-based natural language processing (NLP) model predicted isocitrate dehydrogenase mutation status in diffuse glioma with an AUC of 0.85 in the external validation set. • The best NLP models were superior or at least comparable to human readers in both internal and external validation sets. • Transformer-based models showed higher performance than conventional NLP model such as long short-term memory.


Subject(s)
Brain Neoplasms , Glioma , Male , Humans , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Magnetic Resonance Imaging , Retrospective Studies , Natural Language Processing , Neoplasm Grading , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Genotype
16.
Eur J Neurol ; 30(10): 3114-3123, 2023 10.
Article in English | MEDLINE | ID: mdl-37498202

ABSTRACT

BACKGROUND AND PURPOSE: The choroid plexus (CP) clears harmful metabolites from the central nervous system as part of the glymphatic system. We investigated the association of CP volume (CPV) with baseline and longitudinal cognitive decline in patients with Parkinson disease (PD). METHODS: We retrospectively reviewed the medical records of 240 patients with newly diagnosed PD who had undergone detailed neuropsychological tests and high-resolution T1-weighted structural magnetic resonance imaging during the initial assessment. The CPV of each patient was automatically segmented, and the intracranial volume ratio was used in subsequent analyses. The relationship between CPV and baseline composite scores of each cognitive domain was assessed using multivariate linear regression analyses. A Cox proportional hazards model was used to compare the risk of dementia conversion with CPV. RESULTS: CPV negatively correlated with composite scores of the frontal/executive function domain (ß = -0.375, p = 0.002) after adjusting for age, sex, years of education, and parkinsonian symptom duration. The Cox regression model revealed that a larger CPV was associated with a higher risk of dementia conversion (hazard ratio [HR] = 1.509, p = 0.038), which was no longer significant after adjusting for the composite scores of the frontal/executive function domain. A mediation analysis demonstrated that the effect of CPV on the risk of dementia conversion was completely mediated by frontal/executive function (direct effect: HR = 1.203, p = 0.396; indirect effect: HR = 1.400, p = 0.015). CONCLUSIONS: Baseline CPV is associated with baseline frontal/executive function, which subsequently influences dementia conversion risk in patients with PD.


Subject(s)
Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/psychology , Dementia/etiology , Dementia/complications , Retrospective Studies , Choroid Plexus/diagnostic imaging , Cognition/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Neuropsychological Tests , Magnetic Resonance Imaging/methods
17.
J Korean Med Sci ; 38(16): e159, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37096314

ABSTRACT

BACKGROUND: Numerous studies have shown the effect of particulate matter exposure on brain imaging markers. However, little evidence exists about whether the effect differs by the level of low-grade chronic systemic inflammation. We investigated whether the level of c-reactive protein (CRP, a marker of systemic inflammation) modifies the associations of particulate matter exposures with brain cortical gray matter thickness and white matter hyperintensities (WMH). METHODS: We conducted a cross-sectional study of baseline data from a prospective cohort study including adults with no dementia or stroke. Long-term concentrations of particulate matter ≤ 10 µm in diameter (PM10) and ≤ 2.5 µm (PM2.5) at each participant's home address were estimated. Global cortical thickness (n = 874) and WMH volumes (n = 397) were estimated from brain magnetic resonance images. We built linear and logistic regression models for cortical thickness and WMH volumes (higher versus lower than median), respectively. Significance of difference in the association between the CRP group (higher versus lower than median) was expressed as P for interaction. RESULTS: Particulate matter exposures were significantly associated with a reduced global cortical thickness only in the higher CRP group among men (P for interaction = 0.015 for PM10 and 0.006 for PM2.5). A 10 µg/m3 increase in PM10 was associated with the higher volumes of total WMH (odds ratio, 1.78; 95% confidence interval, 1.07-2.97) and periventricular WMH (2.00; 1.20-3.33). A 1 µg/m3 increase in PM2.5 was associated with the higher volume of periventricular WMH (odds ratio, 1.66; 95% confidence interval, 1.08-2.56). These associations did not significantly differ by the level of high sensitivity CRP. CONCLUSION: Particulate matter exposures were associated with a reduced global cortical thickness in men with a high level of chronic inflammation. Men with a high level of chronic inflammation may be susceptible to cortical atrophy attributable to particulate matter exposures.


Subject(s)
Air Pollutants , White Matter , Male , Adult , Humans , Particulate Matter/analysis , Gray Matter , White Matter/chemistry , Prospective Studies , Cross-Sectional Studies , Environmental Exposure , Inflammation , Brain
18.
J Neuroradiol ; 50(4): 388-395, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36370829

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the diagnostic performance of fully automated radiomics-based models for multiclass classification of a single enhancing brain tumor among glioblastoma, central nervous system lymphoma, and metastasis. MATERIALS AND METHODS: The training and test sets were comprised of 538 cases (300 glioblastomas, 73 lymphomas, and 165 metastases) and 169 cases (101 glioblastomas, 29 lymphomas, and 39 metastases), respectively. After fully automated segmentation, radiomic features were extracted. Three conventional machine learning classifiers, including least absolute shrinkage and selection operator (LASSO), adaptive boosting (Adaboost), and support vector machine with the linear kernel (SVC), combined with one of four feature selection methods, including forward sequential feature selection, F score, mutual information, and LASSO, were trained. Additionally, one ensemble classifier based on the three classifiers was used. The diagnostic performance of the optimized models was tested in the test set using the accuracy, F1-macro score, and the area under the receiver operating characteristic curve (AUCROC). RESULTS: The best performance was achieved when the LASSO was used as a feature selection method. In the test set, the best performance was achieved by the ensemble classifier, showing an accuracy of 76.3% (95% CI, 70.0-82.7), a F1-macro score of 0.704, and an AUCROC of 0.878. CONCLUSION: Our fully automated radiomics-based models for multiclass classification might be useful for differential diagnosis of a single enhancing brain tumor with a good diagnostic performance and generalizability.


Subject(s)
Brain Neoplasms , Glioblastoma , Lymphoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Retrospective Studies , Brain Neoplasms/pathology , Machine Learning , Lymphoma/diagnostic imaging
19.
J Neurooncol ; 159(3): 695-703, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988090

ABSTRACT

PURPOSE: To investigate whether type-specific sex differences in survival exist independently of clinical and molecular factors in adult-type diffuse gliomas according to the 2021 World Health Organization (WHO) classification. METHODS: A retrospective chart and imaging review of 1325 patients (mean age, 54 ± 15 years; 569 females) with adult-type diffuse gliomas (oligodendroglioma, IDH-mutant, and 1p/19q-codeleted, n = 183; astrocytoma, IDH-mutant, n = 211; glioblastoma, IDH-wildtype, n = 800; IDH-wildtype diffuse glioma, NOS, n = 131) was performed. The demographic information, extent of resection, imaging data, and molecular data including O6-methylguanine-methyltransferase promoter methylation (MGMT) promotor methylation were collected. Sex differences in survival were analyzed using Cox analysis. RESULTS: In patients with glioblastoma, IDH-wildtype, female sex remained as an independent predictor of better overall survival (hazard ratio = 0.91, P = 0.031), along with age, histological grade 4, MGMT promoter methylation status, and gross total resection. Female sex showed a higher prevalence of MGMT promoter methylation (40.2% vs 32.0%, P = 0.017) but there was no interaction effect between female sex and MGMT promoter methylation status (P-interaction = 0.194), indicating independent role of female sex. The median OS for females were 19.2 months (12.3-35.0) and 16.2 months (10.5-30.6) for males. No sex difference in survival was seen in other types of adult-type diffuse gliomas. CONCLUSION: There was a female survival advantage in glioblastoma, IDH-wildtype, independently of clinical data or MGMT promoter methylation status. There was no sex difference in survival in other types of adult-type diffuse gliomas, suggesting type-specific sex effects solely in glioblastoma, IDH-wildtype.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Adult , Aged , Brain Neoplasms/pathology , Female , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Male , Methyltransferases , Middle Aged , Mutation , Prognosis , Retrospective Studies , World Health Organization
20.
Eur Radiol ; 32(12): 8089-8098, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35763095

ABSTRACT

OBJECTIVES: To assess whether radiomic features could improve the accuracy of survival predictions of IDH-wildtype (IDHwt) histological lower-grade gliomas (LGGs) over clinicopathological features. METHODS: Preoperative MRI data of 61 patients with IDHwt histological LGGs were included as the institutional training set. The test set consisted of 32 patients from The Cancer Genome Atlas. Radiomic features (n = 186) were extracted using conventional MRIs. The radiomics risk score (RRS) for overall survival (OS) was derived from the elastic net. Multivariable Cox regression analyses with clinicopathological features (including epidermal growth factor receptor [EGFR] amplification and telomerase reverse transcriptase promoter [TERTp] mutation status) and the RRS were performed. The integrated area under the receiver operating curves (iAUCs) from the models with and without the RRS were compared. The net reclassification index (NRI) for 1-year OS was also calculated. The prognostic value of the RRS was evaluated using the external validation set. RESULTS: The RRS independently predicted OS (hazard ratio = 48.08; p = 0.001). Compared with the clinicopathological model alone, adding the RRS had a better OS prediction performance (iAUCs 0.775 vs. 0.910), which was internally validated (iAUCs 0.726 vs. 0.884, 1-year OS NRI = 0.497), and a similar trend was found on external validation (iAUCs 0.683 vs. 0.705, 1-year OS NRI = 0.733). The prognostic significance of the RRS was confirmed in the external validation set (p = 0.001). CONCLUSIONS: Integrating radiomics with clinicopathological features (including EGFR amplification and TERTp mutation status) can improve survival prediction in patients with IDHwt LGGs. KEY POINTS: • Radiomics risk score has the potential to improve survival prediction when added to clinicopathological features (iAUCs increased from 0.775 to 0.910). • NRIs for 1-year OS showed that the radiomics risk score had incremental value over the clinicopathological model. • The prognostic significance of the radiomics risk score was confirmed in the external validation set (p = 0.001).


Subject(s)
Brain Neoplasms , Glioma , Telomerase , Humans , Prognosis , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Glioma/diagnostic imaging , Glioma/genetics , Mutation , ErbB Receptors/genetics , World Health Organization , Retrospective Studies , Isocitrate Dehydrogenase/genetics , Telomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL