Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673730

ABSTRACT

Atopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) + AD. The HF + AD mice exhibited more severe AD symptoms than the AD or sham control mice. Skin lipidome analysis revealed noteworthy changes in arachidonic acid (AA) metabolism, including increased expression of pla2g4, a key enzyme in AA generation. Genes for phospholipid transport (Scarb1) and acyltransferase utilizing AA as the acyl donor (Agpat3) were upregulated in HF + AD skin. Associations were observed between AA-containing phospholipids and skin lipids containing AA and its metabolites. Furthermore, imbalanced phospholipid metabolism was identified in the HF + AD mice, marked by excessive activation of the AA and phosphatidic acid (PA)-mediated pathway. This imbalance featured increased expression of Plcb1, Plcg1, and Dgk involved in PA generation, along with a decrease in genes converting PA into diglycerol (DG) and CDP-DG (Lpin1 and cds1). This investigation revealed imbalanced phospholipid metabolism in the skin of HF + AD mice, contributing to the heightened inflammatory response observed in HF + AD, shedding light on potential mechanisms linking obesity to the exacerbation of AD symptoms.


Subject(s)
Dermatitis, Atopic , Diet, High-Fat , Disease Models, Animal , Obesity , Animals , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/etiology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Obesity/metabolism , Obesity/genetics , Obesity/complications , Mice , Diet, High-Fat/adverse effects , Skin/metabolism , Skin/pathology , Lipid Metabolism/genetics , Mice, Inbred C57BL , Arachidonic Acid/metabolism , Lipidomics/methods , Male , Phospholipids/metabolism
2.
Cell Commun Signal ; 21(1): 309, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904191

ABSTRACT

INTRODUCTION: Cytokines of the common γ chain (γc) family are critical for the development, differentiation, and survival of T lineage cells. Cytokines play key roles in immunodeficiencies, autoimmune diseases, allergies, and cancer. Although γc is considered an assistant receptor to transmit cytokine signals and is an indispensable receptor in the immune system, its regulatory mechanism is not yet well understood. OBJECTIVE: This study focused on the molecular mechanisms that γc expression in T cells is regulated under T cell receptor (TCR) stimulation. METHODS: The γc expression in TCR-stimulated T cells was determined by flow cytometry, western blot and quantitative RT-PCR. The regulatory mechanism of γc expression in activated T cells was examined by promoter-luciferase assay and chromatin immunoprecipitation assays. NFAT1 and NFκB deficient cells generated using CRISPR-Cas9 and specific inhibitors were used to examine their role in regulation of γc expression. Specific binding motif was confirmed by γc promotor mutant cells generated using CRISPR-Cas9. IL-7TgγcTg mice were used to examine regulatory role of γc in cytokine signaling. RESULTS: We found that activated T cells significantly upregulated γc expression, wherein NFAT1 and NFκB were key in transcriptional upregulation via T cell receptor stimulation. Also, we identified the functional binding site of the γc promoter and the synergistic effect of NFAT1 and NFκB in the regulation of γc expression. Increased γc expression inhibited IL-7 signaling and rescued lymphoproliferative disorder in an IL-7Tg animal model, providing novel insights into T cell homeostasis. CONCLUSION: Our results indicate functional cooperation between NFAT1 and NFκB in upregulating γc expression in activated T cells. As γc expression also regulates γc cytokine responsiveness, our study suggests that γc expression should be considered as one of the regulators in γc cytokine signaling and the development of T cell immunotherapies. Video Abstract.


Subject(s)
Receptors, Cytokine , T-Lymphocytes , Animals , Mice , Cytokines , Receptors, Antigen, T-Cell , Signal Transduction , Humans
3.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003650

ABSTRACT

This study investigated the neuroprotective effects of Dendropanax morbifera leaves and stems (DMLS) water extract on scopolamine (SCO)-induced memory impairment in mice. First, we conducted experiments to determine the protective effect of DMLS on neuronal cells. Treatment with DMLS showed a significant protective effect against neurotoxicity induced by Aß(25-35) or H2O2. After confirming the neuroprotective effects of DMLS, we conducted animal studies. We administered DMLS orally at concentrations of 125, 250, and 375 mg/kg for 3 weeks. In the Y-maze test, SCO decreased spontaneous alternation, but treatment with DMLS or donepezil increased spontaneous alternation. In the Morris water-maze test, the SCO-treated group showed increased platform reach time and decreased swim time on the target platform. The passive avoidance task found that DMLS ingestion increased the recognition index in short-term memory. Furthermore, memory impairment induced by SCO reduced the ability to recognize novel objects. In the Novel Object Recognition test, recognition improved with DMLS or donepezil treatment. In the mouse brain, except for the cerebellum, acetylcholinesterase activity increased in the SCO group and decreased in the DMLS and donepezil groups. We measured catalase and malondialdehyde, which are indicators of antioxidant effectiveness, and found that oxidative stress increased with SCO but was mitigated by DMLS or donepezil treatment. Thus, our findings suggest that ingestion of DMLS restored memory impairment by protecting neuronal cells from Aß(25-35) or H2O2-induced neurotoxicity, and by reducing oxidative stress.


Subject(s)
Neuroprotective Agents , Scopolamine , Mice , Animals , Scopolamine/adverse effects , Neuroprotective Agents/adverse effects , Hydrogen Peroxide/pharmacology , Water/pharmacology , Acetylcholinesterase/metabolism , Donepezil/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Oxidative Stress , Maze Learning , Plant Extracts/adverse effects
4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562915

ABSTRACT

The effect of statins on aminoglycoside-induced ototoxicity is controversial. This study aimed to explore the role of pravastatin (PV) in kanamycin-induced hearing loss in rats. Adult rats were intraperitoneally treated with 20 mg/kg/day of kanamycin (KM) for 10 days. In the PV- and PV + KM-treated rats, 25 mg/kg/day of PV was intraperitoneally administered for 5 days. The auditory brainstem response (ABR) thresholds were measured before and after drug treatment using a smartEP system at 4, 8, 16, and 32 kHz. Cochlear changes in poly ADP-ribose (PAR) polymerase (PARP), PAR, and caspase 3 were estimated using Western blotting. PV administration did not increase the ABR thresholds. The KM-treated rats showed elevated ABR thresholds at 4, 8, 16, and 32 kHz. The PV + KM-treated rats demonstrated lower ABR thresholds than the KM-treated rats at 4, 8, and 16 kHz. The cochlear outer hair cells and spiral ganglion cells were relatively preserved in the PV + KM-treated rats when compared with that in the KM-treated rats. The cochlear expression levels of PARP, PAR, and caspase 3 were higher in the KM-treated rats. The PV + KM-treated rats showed lower levels of PARP, PAR, and caspase 3 than the KM-treated rats. PV protected cochleae from KM-induced hearing loss in rats. The regulation of autophagy and apoptosis mediated the otoprotective effects of PV.


Subject(s)
Deafness , Hearing Loss , Animals , Caspase 3/metabolism , Cochlea/metabolism , Deafness/metabolism , Evoked Potentials, Auditory, Brain Stem , Hearing Loss/chemically induced , Hearing Loss/drug therapy , Hearing Loss/metabolism , Kanamycin/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Pravastatin/pharmacology , Rats
5.
BMC Neurosci ; 22(1): 38, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34020590

ABSTRACT

BACKGROUND: The receptor for advanced glycation end-products (RAGE) is involved in neuroinflammation. This study investigated the changes in RAGE expression following noise-induced hearing loss. METHODS: Three-week-old female Sprague-Dawley rats were exposed to 115 dB SPL white noise for 4 h daily for 3 d (noise group, n = 16). In parallel, age and sex-matched control rats were raised under standard conditions without noise exposure (control group, n = 16). After 2 h (noise immediate, n = 8) and 4 wk (noise 4-week, n = 8) of noise exposure, the auditory cortex was harvested and cytoplasmic and nuclear fractions were isolated. The gene expression levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6), interleukin 1 beta (IL1ß), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and RAGE were evaluated using real-time reverse transcription polymerase chain reaction. The protein expression levels of nuclear RAGE and cytosolic RAGE were evaluated using western blotting. Additionally, matrix metalloproteinase 9 (MMP9) was pharmacologically inhibited in the noise immediate group, and then nuclear and cytosolic RAGE expression levels were evaluated. RESULTS: The noise immediate and noise 4-week groups exhibited increased auditory thresholds at 4, 8, 16, and 32 kHz frequencies. The genes encoding the pro-inflammatory cytokines TNF-α, IL6, IL1ß, and NF- κB were increased 3.74, 1.63, 6.42, and 6.23-fold in the noise immediate group, respectively (P = 0.047, 0.043, 0.044, and 0.041). RAGE mRNA expression was elevated 1.42-fold in the noise 4-week group (P = 0.032). Cytosolic RAGE expression was increased 1.76 and 6.99-fold in the noise immediate and noise 4-week groups, respectively (P = 0.04 and 0.03). Nuclear RAGE expression was comparable between the noise and control groups. matrix metalloproteinase 9 (MMP9) inhibition reduced cytosolic RAGE expression in the noise immediate group (P = 0.004). CONCLUSIONS: Noise exposure increased the expression of cytosolic RAGE in the auditory cortex and upregulated pro-inflammatory genes, but this response could be alleviated by MMP9 inhibition.


Subject(s)
Auditory Cortex/metabolism , Hearing Loss, Noise-Induced/metabolism , Inflammation Mediators/metabolism , Receptor for Advanced Glycation End Products/biosynthesis , Animals , Female , Gene Expression , Hearing Loss, Noise-Induced/genetics , Rats , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products/genetics
6.
Brain Behav Immun ; 94: 424-436, 2021 05.
Article in English | MEDLINE | ID: mdl-33607237

ABSTRACT

Depression is a serious disease that has considerable impact on lipid metabolism and inflammatory responses. Recent studies have shown that leptin, which is well known as a mediator of energy homeostasis and is a cytokine in inflammatory response, plays an important role in depression. Acupuncture is widely used to treat depression; however, the underlying mechanisms and the effect of acupuncture on depression remain poorly understood. In this study, we utilized the chronic restraint stress (CRS) induced depression model and acupuncture treatment was performed at KI10, LR8, LU8, LR4 (AP) or non-acupoint (NP). Then, lipidomics was applied to investigate the effects of acupuncture on lipid metabolism and analyze leptin signals in the brain and changes of immune markers. Acupuncture treatment at AP improved depression-like behavior in an open-field test, forced swimming test, and marble burying test. Concurrently, CRS mice treated with AP acupuncture (CRS + AP) had significantly lower levels of aspartate aminotransaminase (AST, liver injury markers) and exhibited different lipid patterns in liver lipidomic profiles. In particular, triglycerides (TGs) contributed the change of lipid patterns. Compared to the CRS mice, TGs with relatively high degrees of unsaturated fatty acids increased in the CRS + AP mice, but did not change in CRS mice treated with NP acupuncture (CRS + NP). The levels of leptin in plasma and leptin receptor positive cells in the brain (hypothalamus and hippocampus) decreased and increased, respectively, in the CRS + AP mice, while opposite patterns were exhibited in the CRS and CRS + NP mice. These results indicated that acupuncture treatment at AP attenuated leptin insensitivity in CRS mice. Additionally, expression of pro-inflammatory cytokines such as interleukin-1 beta and tumor necrosis factor-alpha were decreased in the spleen, plasma, and liver of CRS + AP mice, which was one of results of alleviation of leptin resistance. In conclusion, these results show that AP acupuncture treatment effectively alleviated the depression-like behavior, affected immune responses, and altered hepatic lipid metabolism through the attenuation of leptin insensitivity.


Subject(s)
Acupuncture Therapy , Lipid Metabolism , Animals , Depression/therapy , Disease Models, Animal , Lipidomics , Mice
7.
Biochem Genet ; 59(3): 731-750, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33515340

ABSTRACT

This study aimed to explore gene expression changes in the inferior colliculus (IC) after single-sided deafness (SSD). Forty 8-week-old female Sprague-Dawley rats were used. Twenty rats underwent right-side cochlear ablation, and IC tissues were harvested after 2 weeks (SSD 2-week group). Twenty rats underwent a sham operation and were sacrificed after 2 weeks (control group). Both sides of the IC were analyzed using a gene expression array. Pathway analyses were performed on genes that were differentially expressed compared with their levels in the control group. The expression levels of genes involved in the candidate pathways were confirmed using reverse transcription polymerase chain reaction (RT-PCR). Among the genes with ≥ 1.5-fold changes in expression levels and P < 0.05, there were 7 and 9 genes with increased and decreased expression, respectively, in the ipsilateral IC and 10 and 12 genes with increased and decreased expression, respectively, in the contralateral IC. The pathway analysis did not identify significantly related pathway. In the bilateral analysis, a total of 14 genes were ≥ 1.3-fold downregulated in both the ipsilateral and contralateral IC in the SSD 2-week group compared with their expression in the control group. Pathway analyses of these 14 genes included 7 genes, namely, amine compound solute carrier (Slc)5a7; Slc18a3; Slc6a5; synaptic vesicle glycoprotein 2C (Sv2c); S100 calcium binding protein A10 (S100a10); a gene with sequence similarity to family 111, member A (Fam111a); and peripherin (Prph), that were related to the acetylcholine neurotransmitter release cycle, SLC transporters, and the neurotransmitter release cycle pathways. RT-PCR showed reduced expression of Slc5a7, Sv2c, and Prph in the contralateral IC and Slc18a3 and Slc6a5 in the ipsilateral IC of the SSD 2-week group compared with that in the control group.


Subject(s)
Cochlea/surgery , Gene Expression Profiling , Inferior Colliculi/metabolism , Animals , Auditory Threshold , Female , Hearing Loss/genetics , Hearing Loss/physiopathology , Inferior Colliculi/surgery , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
8.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884516

ABSTRACT

Telmisartan (TM) has been proposed to relieve inflammatory responses by modulating peroxisome proliferator activator receptor-γ (PPARγ) signaling. This study aimed to investigate the protective effects of TM on kanamycin(KM)-induced ototoxicity in rats. Forty-eight, 8-week-old female Sprague Dawley rats were divided into four groups: (1) control group, (2) TM group, (3) KM group, and (4) TM + KM group. Auditory brainstem response was measured. The histology of the cochlea was examined. The protein expression levels of angiotensin-converting enzyme 2 (ACE2), HO1, and PPARγ were measured by Western blotting. The auditory threshold shifts at 4, 8, 16, and 32 kHz were lower in the TM + KM group than in the KM group (all p < 0.05). The loss of cochlear outer hair cells and spiral ganglial cells was lower in the TM + KM group than in the KM group. The protein expression levels of ACE2, PPARγ, and HO1 were higher in the KM group than in the control group (all p < 0.05). The TM + KM group showed lower expression levels of PPARγ and HO1 than the KM group.TM protected the cochlea from KM-induced injuries in rats. TM preserved hearing levels and attenuated the increase in PPARγ and HO1 expression levels in KM-exposed rat cochleae.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Kanamycin/toxicity , Ototoxicity/drug therapy , PPAR gamma/metabolism , Telmisartan/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Animals , Anti-Bacterial Agents/toxicity , Antihypertensive Agents/pharmacology , Auditory Threshold/drug effects , Cochlea/drug effects , Evoked Potentials, Auditory, Brain Stem/drug effects , Female , Heme Oxygenase (Decyclizing)/genetics , Ototoxicity/etiology , Ototoxicity/metabolism , Ototoxicity/pathology , PPAR gamma/genetics , Rats , Rats, Sprague-Dawley
9.
Int J Mol Sci ; 22(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070066

ABSTRACT

Megalin has been proposed as an endocytic receptor for aminoglycosides as well as estrogen and androgen. We aimed to investigate the otoprotective effects of antiandrogens (flutamide, FM) on kanamycin (KM)-induced hearing loss in rats. Rats were divided into four groups. The KM group was administered KM (20 mg/kg/day) for 5 days, while the FM group received FM (15 mg/kg/day) for 10 days. In the KM + FM group, KM and FM (15 mg/kg/day) were simultaneously injected for 5 days and then FM was injected for 5 days. Auditory brainstem responses were measured. Western blotting and/or quantitative reverse transcriptase-polymerase chain reaction were performed for megalin, cytochrome P450 1A1 (Cyp1a1), Cyp1b1, metallothionein 1A (MT1A), MT2A, tumor necrosis factor (TNF)-α, caspase 3, and cleaved caspase 3. The FM + KM group showed attenuated auditory thresholds when compared with the KM group at 4, 8, 16, and 32 kHz (all p < 0.05). The KM + FM group showed lower megalin and Cyp1b1 levels than the KM group (all p < 0.05). The KM + FM group revealed lower MT1A, TNFα, and caspase 3 protein levels, compared with those in the KM group (all p < 0.05). Androgen receptor inhibition protects against cochlear injuries in KM-induced hearing loss rats by attenuating megalin expression, revealing anti-inflammatory and anti-apoptotic effects.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Hearing Loss, Sensorineural/prevention & control , Animals , Anti-Bacterial Agents/toxicity , Auditory Threshold/drug effects , Cochlea/drug effects , Cochlea/pathology , Cochlea/physiopathology , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Evoked Potentials, Auditory, Brain Stem/drug effects , Flutamide/pharmacology , Gene Expression/drug effects , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/physiopathology , Kanamycin/toxicity , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Metallothionein/genetics , Metallothionein/metabolism , Protective Agents/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
10.
BMC Neurosci ; 21(1): 45, 2020 11 07.
Article in English | MEDLINE | ID: mdl-33160313

ABSTRACT

BACKGROUND: This study aimed to investigate the changes in the expression of hippocampal genes upon acute noise exposure. METHODS: Three-week-old Sprague-Dawley rats were assigned to control (n = 15) and noise (n = 15) groups. White noise (2-20 kHz, 115 dB sound pressure level [SPL]) was delivered for 4 h per day for 3 days to the noise group. All rats were sacrificed on the last day of noise exposure, and gene expression in the hippocampus was analyzed using a microarray. Pathway analyses were conducted for genes that showed differential expression ≥ 1.5-fold and P ≤ 0.05 compared to the control group. The genes included in the putative pathways were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: Thirty-eight upregulated genes and 81 downregulated genes were identified. The pathway analyses revealed that upregulated genes were involved in the cellular responses to external stimuli and immune system pathways. qRT-PCR confirmed the upregulation of the involved genes. The downregulated genes were involved in neuronal systems and synapse-related pathways, and qRT-PCR confirmed the downregulation of the involved genes. CONCLUSIONS: Acute noise exposure upregulated the expression of immune-related genes and downregulated the expression of neurotransmission-related genes in the hippocampus.


Subject(s)
Hippocampus/metabolism , Noise/adverse effects , Wounds and Injuries/genetics , Animals , Auditory Threshold , Female , Gene Expression Profiling , Hearing Loss, Noise-Induced , Immune System , Microarray Analysis , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Synapses/pathology
11.
BMC Neurosci ; 21(1): 16, 2020 04 25.
Article in English | MEDLINE | ID: mdl-32334536

ABSTRACT

BACKGROUND: This study aimed to investigate the changes in molecules related to perineuronal nets (PNNs) and synaptic transporters in the primary auditory cortices of rats with noise-induced hearing loss. Female Sprague-Dawley rats at postnatal day 7 were divided into the noise and control groups. Four hours of 115 dB SPL white noise was delivered for 10 days to the noise group. Thirty days after noise exposure, the primary auditory cortex and the inferior colliculus were harvested. The expression levels of vesicular glutamatergic transporter (VGLUT)1, VGLUT2, vesicular GABA transporter (VGAT), glutamate decarboxylase (GAD)67, brevican, aggrecan, MMP9, and MMP14 were evaluated using real-time reverse transcription polymerase chain reaction or western blot. An immunofluorescence assay was conducted to assess parvalbumin (PV), Wisteria floribunda agglutinin (WFA), and brevican. The immune-positive cells were counted in the primary auditory cortex. RESULTS: The expression level of VGLUT1 in the primary auditory cortex was decreased in the noise group. The expression level of VGLUT2 in the inferior colliculus was elevated in the noise group. The expression levels of brevican and PV + WFA in the primary auditory cortex were decreased in the noise group. The expression level of MMP9 in the primary auditory cortex was increased in the noise group. CONCLUSION: Noise-induced hearing loss during the precritical period impacted PNN expression in the primary auditory cortex. Increased MMP9 expression may have contributed to the decrease in brevican expression. These changes were accompanied by the attenuation of glutamatergic synaptic transporters.


Subject(s)
Brevican/metabolism , Extracellular Matrix/metabolism , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , Matrix Metalloproteinase 9/metabolism , Animals , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Female , Parvalbumins/metabolism , Plant Lectins/metabolism , Rats, Sprague-Dawley , Receptors, N-Acetylglucosamine/metabolism
12.
Part Fibre Toxicol ; 17(1): 34, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32680532

ABSTRACT

BACKGROUND: Nanotechnology is indispensable to many different applications. Although nanoparticles have been widely used in, for example, cosmetics, sunscreen, food packaging, and medications, they may pose human safety risks associated with nanotoxicity. Thus, toxicity testing of nanoparticles is essential to assess the relative health risks associated with consumer exposure. METHODS: In this study, we identified the NOAEL (no observed adverse effect level) of the agglomerated/aggregated TiO2 P25 (approximately 180 nm) administered at repeated doses to Sprague-Dawley (SD) rats for 28 and 90 days. Ten of the 15 animals were necropsied for toxicity evaluation after the repeated-dose 90-day study, and the remaining five animals were allowed to recover for 28 days. The agglomerated/aggregated TiO2 P25 dose levels used included 250 mg kg- 1 d- 1 (low), 500 mg kg- 1 d- 1 (medium), and 1000 mg kg- 1 d- 1 (high), and their effects were compared with those of the vehicle control. During the treatment period, the animals were observed for mortality, clinical signs (detailed daily and weekly clinical observations), functional observation battery, weekly body weight, and food and water consumption and were also subjected to ophthalmological examination and urinalysis. After termination of the repeated-dose 28-day, 90-day, and recovery studies, clinical pathology (hematology, blood coagulation time, and serum biochemistry), necropsy (organ weights and gross findings), and histopathological examinations were performed. RESULTS: No systemic toxicological effects were associated with the agglomerated/aggregated TiO2 P25 during the repeated-dose 28-day, 90-day, and recovery studies in SD rats. Therefore, the NOAEL of the agglomerated/aggregated TiO2 P25 was identified as 1000 mg kg- 1 d- 1, and the substance was not detected in the target organs. CONCLUSION: Subacute and subchronic oral administration of the agglomerated/aggregated TiO2 P25 was unlikely to cause side effects or toxic reactions in rats.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Titanium/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Nanoparticles , Nanotechnology , Rats , Rats, Sprague-Dawley , Toxicity Tests
13.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374326

ABSTRACT

Previous preclinical studies have demonstrated the otoprotective effects of resveratrol (RV) at low doses. This study aimed to investigate the dose-dependent effects of RV in rats with cisplatin (CXP)-induced hearing loss. Sprague-Dawley rats (8-weeks old) were divided into six treatment groups (n = 12/group) and treated as follows: control, 0.5 mg/kg RV, 50 mg/kg RV, CXP, 0.5 mg/kg RV + CXP), and 50 mg/kg RV + CXP groups. CXP (3 mg/kg) was intraperitoneally injected for 5 days. RV (0.5 or 50 mg/kg) was intraperitoneally injected for 10 days from the first day of CXP administration. Auditory brainstem response (ABR) thresholds were measured before and within 3 days at the end of the drug administration. Cochlear tissues were harvested, and the outer hair cells were examined using cochlear whole mounts. The mRNA expression of NFκB, IL6, IL1ß, and CYP1A1, and protein levels of aryl hydrocarbon receptor (AhR) and cytosolic and nuclear receptor for advanced glycation endproducts (RAGE) were evaluated. The ABR threshold increased in the 50 mg/kg RV and CXP groups at 4, 8, 16, and 32 kHz. The 0.5 mg/kg RV + CXP group demonstrated decreased hearing thresholds at 4 and 32 kHz compared to the CXP group. Cochlear whole-mount analysis revealed loss of outer hair cells in the 50 mg/kg RV and CXP groups and partial prevention of these cells in the 0.5 mg/kg RV + CXP group. The mRNA expressions of NFκB, IL6, and IL1ß were increased in the 50 mg/kg RV and CXP groups compared to the control group. In contrast, these levels were decreased in the 0.5 mg/kg RV + CXP group compared to the CXP group. The mRNA expression of CYP1A1 was increased in the CXP group, while it was decreased in the 0.5 mg/kg RV + CXP group compared to the control group. The protein levels of AhR and cytosolic RAGE decreased in the 0.5 mg/kg RV group. Low-dose RV had partial otoprotective effects on CXP ototoxicity. The otoprotective effects of RV may be mediated through anti-oxidative (CYP1A1 and RAGE) and anti-inflammatory (NFκB, IL6, and IL1ß) responses. High-dose RV exerted an inflammatory response and did not ameliorate CXP-induced ototoxicity.


Subject(s)
Cisplatin/adverse effects , Hearing Loss, Sensorineural/drug therapy , Resveratrol/pharmacology , Animals , Antioxidants/pharmacology , Cochlea/drug effects , Cytochrome P-450 CYP1A1/biosynthesis , Dose-Response Relationship, Drug , Evoked Potentials, Auditory, Brain Stem/drug effects , Female , Hearing Loss, Sensorineural/chemically induced , Inflammation , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , NF-kappa B p50 Subunit/biosynthesis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism
14.
Int J Mol Sci ; 21(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429117

ABSTRACT

Previous studies have described the effects of zingerone (ZO) on cisplatin (CXP)-induced injury to the kidneys, liver, and other organs but not to the cochlea. This study aimed to investigate the effects of ZO on CXP-induced ototoxicity. Eight-week-old Sprague-Dawley rats were used and divided into a control group, a CXP group, and a CXP + ZO group. Rats in the CXP group received 5 mg/kg/day CXP intraperitoneally for five days. Rats in the CXP + ZO group received 5 mg/kg/day CXP intraperitoneally for five days and 50 mg/kg/day ZO intraperitoneally for seven days. Auditory brainstem response thresholds (ABRTs) were measured before (day 0) and after (day 10) drug administration. Cochlear histology was examined using hematoxylin and eosin (H&E) staining and cochlear whole mounts. The expression levels of cytochrome P450 (CYP)1A1, CYP1B1, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), and interleukin 6 (IL6) were estimated using quantitative reverse transcription-polymerase chain reaction. The expression levels of heme oxygenase 1 (HO1) and caspase 3 were analyzed via Western blotting. The auditory thresholds at 4, 8, and 16 kHz were attenuated in the CXP + ZO group compared with the CXP group. The mRNA expression levels of CYP1A1, CYP1B1, iNOS, NFκB, TNFα, and IL6 were lower in the CXP + ZO group than in the CXP group. The protein expression levels of HO1 and caspase 3 were lower in the CXP + ZO group than in the CXP group. Cotreatment with ZO exerted otoprotective effects against CXP-induced cochlear injury via antioxidative and anti-inflammatory activities involving CYPs, iNOS, NFκB, and TNFα.


Subject(s)
Cisplatin/adverse effects , Guaiacol/analogs & derivatives , Ototoxicity/drug therapy , Protective Agents/therapeutic use , Animals , Auditory Threshold/drug effects , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Female , Gene Expression Regulation/drug effects , Guaiacol/pharmacology , Guaiacol/therapeutic use , Ototoxicity/genetics , Ototoxicity/physiopathology , Protective Agents/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
15.
Clin Otolaryngol ; 44(6): 997-1003, 2019 11.
Article in English | MEDLINE | ID: mdl-31468673

ABSTRACT

OBJECTIVES: The aim of the current study was to investigate the effectiveness and clinical feasibility of Biyeom-go for the treatment of nasal symptoms associated with rhinitis. DESIGN: Prospective observational study. SETTING: This study was conducted at the Woosuk Korean Medicine Medical Center in South Korea. PARTICIPANTS: Fifty-eight patients with rhinitis participated in this study. All patients received Biyeom-go treatment >3 times daily for a total of 4 weeks. MAIN OUTCOME MEASURES: The primary outcome was the total nasal symptom score. Mini-rhinoconjunctivitis quality of life questionnaire, nasal endoscopy index, total serum immunoglobulin E levels and immunologic factors in nasal lavage fluid were also measured. RESULTS: Biyeom-go administration was associated with significant improvements in total nasal symptoms scores (P < .0001) and mini-rhinoconjunctivitis quality of life questionnaire scores (P < .0001) in a time-dependent manner. The nasal endoscopy index also significantly improved at weeks 2 (P = .0049), 3 (P < .0001) and 4 (P = .0001) after Biyeom-go treatment. Significantly, increased interleukin-2 levels (P = .005) and decreased interleukin-8, chemokine (C-C motif) ligand (CCL) 5, chemokine (C-X-C motif) ligand (CXCL) 9, CCL2 and CXCL10 levels were observed in the nasal lavage fluid. CONCLUSIONS: The present findings suggest that Biyeom-go may be beneficial for the management of rhinitis symptoms and rhinitis-associated quality of life. Further well-designed randomised controlled trials are needed to evaluate the effectiveness of Biyeom-go for rhinitis.


Subject(s)
Anti-Allergic Agents/therapeutic use , Phytotherapy , Plant Extracts , Rhinitis/complications , Rhinitis/therapy , Administration, Intranasal , Adolescent , Adult , Female , Humans , Male , Middle Aged , Nasal Sprays , Ointments , Prospective Studies , Young Adult
16.
Electrophoresis ; 38(13-14): 1771-1779, 2017 07.
Article in English | MEDLINE | ID: mdl-28401988

ABSTRACT

Telogen hairs presented in the crime scene are commonly encountered as trace evidence. However, short tandem repeat (STR) profiling of the hairs currently have low and limited use due to poor success rate. To increase the success rate of STR profiling of telogen hairs, we developed a rapid and cost-effective method to estimate the number of nuclei in the hair roots. Five cationic dyes, Methyl green (MG), Harris hematoxylin (HH), Methylene blue (MB), Toluidine blue (TB), and Safranin O (SO) were evaluated in this study. We conducted a screening test based on microscopy and the percentage of loss with nuclear DNA, in order to select the best dye. MG was selected based on its specific nuclei staining and low adverse effect on the hair-associated nuclear DNA. We examined 330 scalp and 100 pubic telogen hairs with MG. Stained hairs were classified into five groups and analyzed by STR. The fast staining method revealed 70% (head hair) and 33.4% (pubic hair) of full (30 alleles) and high partial (18-29 alleles) STR profiling proportion from the lowest nuclei count group (one to ten nuclei). The results of this study demonstrated a rapid, specific, nondestructive, and high yield DNA profiling method applicable for screening telogen hairs.


Subject(s)
Coloring Agents/analysis , DNA Fingerprinting/methods , Hair/chemistry , Cations , Coloring Agents/chemistry , Electrophoresis, Capillary/methods , Humans , Methyl Green/analysis , Methyl Green/chemistry , Microsatellite Repeats , Polymerase Chain Reaction
17.
Arch Microbiol ; 199(8): 1151-1163, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28487997

ABSTRACT

Human pathogens have readily been converted into multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), because of the long-term use of conventional antibiotics. In addition, the biofilms formed by S. aureus cells are especially problematic and are related to the persistence of chronic infections because they constitute a major mechanism of promoting tolerance to diverse antimicrobial agents. Hence, the inhibitions of biofilm formation and/or toxin production are accepted as alternative means of controlling S. aureus infections. The present study was aimed at identifying novel anti-biofilm and/or anti-virulence compounds in friedelane-based pentacyclic triterpenoids present in many edible and medicinal plants-and investigating them against MRSA strains. As a result, dihydrocelastrol and dihydrocelastryl diacetate were found to both inhibit the biofilm formation of, and to disrupt the preformed biofilms of, MRSA strains to an increasingly greater degree with increasing concentrations of each compound. Furthermore, these two triterpenoids also clearly inhibited the hemolytic activity of MRSA-and in-line with their anti-biofilm activities, rendered the cell more hydrophilic. Additionally, corroborating phenotypic results, transcriptional analyses showed that both dihydrocelastrol and dihydrocelastryl diacetate disturbed the expression of gene related to α-hemolysin (hla) and down-regulated the expressions of the crucial biofilm-associated genes (agrA, sarA, ica, RNAIII, and rbf) in MRSA. The findings of this study suggest that friedelane-based pentacyclic triterpenoids-especially dihydrocelastrol and dihydrocelastryl diacetate-have the potential to be candidates both for use in controlling biofilm-related infections and for use as important components of anti-virulence strategies for fighting against MRSA infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Triterpenes/pharmacology , Animals , Hemolysis , Humans , Microbial Sensitivity Tests , Rabbits , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Virulence/drug effects
18.
J Phys Ther Sci ; 29(7): 1125-1128, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28744030

ABSTRACT

[Purpose] This study was designed to investigate the effects of lactose-free milk intake and whole-body vibration exercises on bone density in elderly female nursing home residents who had difficulty exercising outdoors and had not consumed milk. [Subjects and Methods] Twenty seven elderly women aged 70 or older from 3 nursing homes located in Incheon, Korea participated in the study. The experimental group (n=13) carried out whole-body vibration exercises and drank lactose-free milk, while the control group (n=14) continued to live their ordinary nursing home lives. Weight, BMI, T-scores, and Z-scores were compared between the experimental and control groups after 12 weeks. [Results] The comparison of changes in weight and BMI in the control group before and after the 12-week experiment found no statistically significant differences. However, bone mineral density was significantly different, with the T-score significantly decreasing from -2.99 to -3.48 and the Z-score decreasing from -1.87 to -2.58. The other comparisons of physical changes in the control group before and after the 12-week experiment found no statistical significance. [Conclusion] The results indicate that regular consumption of lactose-free milk and performing whole-body vibration exercises can delay the progression of bone density loss in older adults in nursing homes; adequate exercise and calcium intake could eventually help prevent fractures.

19.
BMC Complement Altern Med ; 15: 30, 2015 Feb 22.
Article in English | MEDLINE | ID: mdl-25880429

ABSTRACT

BACKGROUND: The pathological change of kidney in diabetic nephropathy is represented hypertrophy, inflammation, and renal fibrosis. Oryeongsan, traditional oriental herbal formula, is widely used for the treatment of nephrosis, dropsy, and uremia. This study was examined whether Oryeongsan attenuate high-glucose (HG)-promoted rat mesangial cell fibrosis and matrix accumulation, major features of diabetic glomerulosclerosis. METHODS: Oryeongsan was mixed traditional herbal medicine, Alisma orientale Juz, Polyporus umbellatus Fries, Atractylodes macrocephala Koidez, Poria cocos Wolf and Cinnamomum Cassia Presl (5:3:3:1). Renoprotective role in diabetic nephropathy of Oryeongsan was evaluated by [(3)H]-thymidine incorporation, Western blot, RT-qPCR and immunofluorescence microscopy assay. RESULTS: Rat mesangial cell proliferation induced by HG was significantly accelerated, which was inhibited by Oryeongsan in a dose dependent manner. HG enhanced expression of fibrosis biomarkers such as collagen IV and connective tissue growth factor (CTGF), which was markedly attenuated by Oryeongsan. Oryeongsan increased HG-inhibited membrane type-1 matrix metalloproteinase expression (MT1-MMP) and MMP-2 promotor activity, whereas suppressed HG-induced tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression. Moreover, Oryeongsan promoted extracellular matrix degradation through disturbing transforming growth factor ß (TGF-ß)-Smad signaling. This study further revealed that Oryeongsan ameliorated HG-induced mesangial inflammation accompanying induction of intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). Moreover, pretreatment of Oryeongsan inhibited NF-κB translocation in HG-exposed mesangial cell. CONCLUSION: These results demonstrate that Oryeongsan has protective effect against renal proliferation, fibrosis, and inflammation. Therefore Oryeongsan may be specific therapies targeting renal dysfunction leading to diabetic nephropathy.


Subject(s)
Diabetic Nephropathies/drug therapy , Glomerular Mesangium/drug effects , Glucose/adverse effects , Magnoliopsida , Mesangial Cells/drug effects , Plant Extracts/therapeutic use , Polyporaceae , Animals , Chemokine CCL2/metabolism , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/metabolism , Fibrosis , Glomerular Mesangium/pathology , Glucose/administration & dosage , Glucose/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Mesangial Cells/pathology , NF-kappa B/metabolism , Phytotherapy , Plant Extracts/pharmacology , Rats , Signal Transduction/drug effects , Smad Proteins/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Transforming Growth Factor beta/metabolism
20.
BMC Complement Altern Med ; 14: 453, 2014 Nov 22.
Article in English | MEDLINE | ID: mdl-25416139

ABSTRACT

BACKGROUND: Gal-geun-dang-gwi-tang (GGDGT), an herbal medicine, is used to treat hypertension, stroke, and other inflammatory disorders in the clinical setting. Recently, GGDGT was recognized by the Korea Institute of Oriental Medicine. This study aimed to evaluate the effects of GGDGT in a diabetic atherosclerosis model using apolipoprotein E knockout (ApoE-/-) mice fed a Western diet. METHODS: The mice were divided into four groups: control group, C57BL6J mice receiving a regular diet (RD); ApoE-/- group, ApoE-/- mice receiving a Western diet (WD); rosiglitazone group, ApoE-/- mice receiving rosiglitazone (WD + 10 mg · kg(-1) · day(-1)); GGDGT group, ApoE-/- mice receiving GGDGT (WD + 200 mg · kg(-1) · day(-1)). RESULTS: Treatment with GGDGT significantly improved glucose tolerance and plasma lipid levels. In addition, GGDGT ameliorated acetylcholine-induced vascular relaxation of the aortic rings. Immunohistochemical staining showed that GGDGT suppressed intercellular adhesion molecule (ICAM)-1 expression; however, expression of endothelial nitric oxide synthase (eNOS) and insulin receptor substrate (IRS)-1 were restored in the thoracic aorta and skeletal muscle, respectively. CONCLUSIONS: These findings suggest that GGDGT attenuates endothelial dysfunction via improvement of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway and improves insulin sensitivity in diabetic atherosclerosis.


Subject(s)
Apolipoproteins E , Atherosclerosis/drug therapy , Diabetic Angiopathies/drug therapy , Diet, Western , Endothelium, Vascular/drug effects , Phytotherapy , Plant Extracts/therapeutic use , Animals , Aorta, Thoracic , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Blood Glucose/metabolism , Cyclic GMP/metabolism , Diabetic Angiopathies/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Insulin/blood , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Lipids/blood , Male , Medicine, Korean Traditional , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Plant Extracts/pharmacology , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL