Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Publication year range
1.
Cell ; 179(5): 1207-1221.e22, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730858

ABSTRACT

Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.


Subject(s)
DNA Replication/genetics , Genome, Human , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Aneuploidy , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Shape , Cell Survival , Chromosomes, Human/genetics , Clone Cells , DNA Transposable Elements/genetics , Diploidy , Female , Genotype , Humans , Male , Mice , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics
2.
Nature ; 612(7938): 106-115, 2022 12.
Article in English | MEDLINE | ID: mdl-36289342

ABSTRACT

How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.


Subject(s)
Genomics , Mutation , Ovarian Neoplasms , Single-Cell Analysis , Triple Negative Breast Neoplasms , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phylogeny , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
3.
Nature ; 595(7868): 585-590, 2021 07.
Article in English | MEDLINE | ID: mdl-34163070

ABSTRACT

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models1-7. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model8,9 to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models with mutated TP53, inferred fitness coefficients from CNA-based genotypes accurately forecast experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially passaged TNBC PDXs resulted in cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the untreated setting. Conversely, high-fitness clones from treatment-naive controls were eradicated, signalling an inversion of the fitness landscape. Finally, upon release of drug, selection pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Together, our findings define clonal fitness linked to both CNA and therapeutic resistance in polyclonal tumours.


Subject(s)
DNA Copy Number Variations , Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms/genetics , Animals , Cell Line, Tumor , Cisplatin/pharmacology , Clone Cells/pathology , Female , Genetic Fitness , Humans , Mice , Models, Statistical , Neoplasm Transplantation , Tumor Suppressor Protein p53/genetics , Whole Genome Sequencing
4.
Glia ; 69(8): 1966-1986, 2021 08.
Article in English | MEDLINE | ID: mdl-33835598

ABSTRACT

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A). We crossed Müller glial cell-CreER (MC-CreER) mice with transgenic mice carrying a floxed IR, HK2, PDH-E1α, LDH-A, or PHGDH gene to study the effect of selectively knocking down key metabolic genes in Müller glia cells on retinal health. Selectively knocking down IR, HK2, or PHGDH led to photoreceptor degeneration and reduced electroretinographic responses. Supplementing exogenous l-serine prevented photoreceptor degeneration and improved retinal function in MC-PHGDH knockdown mice. We unexpectedly found that the levels of retinal serine and glycine were not reduced but, on the contrary, highly increased in MC-PHGDH knockdown mice. Moreover, dietary serine supplementation, while rescuing the retinal phenotypes caused by genetic deletion of PHGDH in Müller glial cells, restored retinal serine and glycine homeostasis probably through regulation of serine transport. No retinal abnormalities were observed in MC-CreER mice crossed with PDH-E1α- or LDH-A-floxed mice despite Cre expression. Our findings suggest that Müller glia do not complete glycolysis but use glucose to produce serine to support photoreceptors. Supplementation with exogenous serine is effective in preventing photoreceptor degeneration caused by PHGDH deficiency in Müller glia.


Subject(s)
Photoreceptor Cells , Retinal Degeneration , Animals , Ependymoglial Cells/metabolism , Mice , Neuroglia/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retinal Degeneration/metabolism
5.
FASEB J ; 34(3): 4369-4383, 2020 03.
Article in English | MEDLINE | ID: mdl-32027418

ABSTRACT

In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death. To identify the molecular mechanism, we found that in mouse embryonic fibroblasts, 3AR-C drastically upregulated RIPK1 kinase activity by selectively inhibiting IKKß. Notably, 3AR-C did not interfere with IKKα or affect the formation of the TNF receptor1 (TNFR1) complex-I. Moreover, in human cancer cells, 3AR-C was only sufficient to sensitize TNF-induced cell death when c-FLIPL expression was downregulated to facilitate the formation of TNFR1 complex-II and necrosome. Taken together, our study identified a novel arborinane triterpenoid 3AR-C as a potent activator of TNF-induced cell death via inhibition of IKKß phosphorylation and promotion of the cytotoxic potential of RIPK1, thus providing a rationale for further development of 3AR-C as a selective IKKß inhibitor to overcome TNF resistance in cancer therpay.


Subject(s)
Apoptosis/physiology , I-kappa B Kinase/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Humans , I-kappa B Kinase/genetics , Magnetic Resonance Spectroscopy , Mice , Programmed Cell Death 1 Receptor/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Diabetologia ; 63(9): 1900-1915, 2020 09.
Article in English | MEDLINE | ID: mdl-32661752

ABSTRACT

AIMS/HYPOTHESIS: Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. METHODS: The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an open-label, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centre-involving DME with central macular thickness (CMT) of >300 µm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. RESULTS: LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm2. The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 µm (p = 0.03 at 200 mW/cm2) and significant reduction at all three settings at 6 months (25 mW/cm2: 53 ± 24 µm, p = 0.04; 100 mW/cm2: 129 ± 51 µm, p < 0.01; 200 mW/cm2: 114 ± 60 µm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm2 with no significant side effects. CONCLUSIONS/INTERPRETATION: PBM results in anatomical improvement of DME over 6 months and may represent a safe and non-invasive treatment. Further testing is warranted in randomised clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT02181400 Graphical abstract.


Subject(s)
Diabetic Retinopathy/radiotherapy , Ependymoglial Cells/radiation effects , Low-Level Light Therapy/methods , Macular Edema/radiotherapy , Aged , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Mitochondria/radiation effects , Oxidative Stress/radiation effects , Rats , Tomography, Optical Coherence
7.
Ann Rheum Dis ; 76(1): 65-71, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26905864

ABSTRACT

OBJECTIVES: To evaluate equivalence in efficacy for rheumatoid arthritis (RA) and compare the safety of the biosimilar HD203 with innovator etanercept (ETN) plus methotrexate (MTX) (ClinicalTrials.gov NCT01270997). METHODS: Patients with active RA received 25 mg HD203 or ETN subcutaneously twice-weekly with MTX for 48 weeks in a phase III, multicentre, randomised, double-blind, parallel-group design. The primary end point was the proportion of patients achieving the American College of Rheumatology 20% response (ACR20) at week 24 for per-protocol study completer set (PPS). Secondary end points included ACR response criteria, ACRn, European League against Rheumatism (EULAR) response, change in Disease Activity Score 28 (DAS28), patient-reported outcomes, safety and immunogenicity. RESULTS: Of the 294 randomised patients (HD203, n=147; ETN, n=147), 233 comprised the 24-week PPS (n=115 and 118, respectively). ACR20 at week 24 was achieved by 83.48% and 81.36% of PPS patients, respectively, demonstrating equivalent efficacy within predefined margins of ±20% (treatment difference 2.12%, 95% CI -7.65% to 11.89%). Outcomes for secondary end points were consistent with the primary efficacy findings. Groups were comparable for overall incidences of treatment-emergent (all-causality) adverse events (AEs) (HD203 113 (76.9%) vs ETN 114 (78.1%) (p=0.804)), adverse drug reactions, serious AEs and discontinuations due to AEs. Few patients (HD203, n=8; ETN, n=3) tested positive for anti-drug antibodies. CONCLUSION: The study met the primary objective of demonstrating equivalent efficacy of HD203 and ETN. HD203 was well tolerated, with safety comparable with ETN in this population of patients with RA. TRIAL REGISTRATION NUMBER: NCT01270997; Results.


Subject(s)
Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/therapeutic use , Etanercept/pharmacokinetics , Etanercept/therapeutic use , Adult , Aged , Antibodies/blood , Antirheumatic Agents/adverse effects , Antirheumatic Agents/immunology , Double-Blind Method , Drug Therapy, Combination , Etanercept/adverse effects , Etanercept/immunology , Female , Humans , Male , Methotrexate/therapeutic use , Middle Aged , Therapeutic Equivalency , Treatment Outcome
8.
Chem Biodivers ; 14(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-28805952

ABSTRACT

The arial parts of Scutellaria barbata D. Don (Lamiaceae) efficiently inhibited NO production in BV2 microglial cells, and the active constituents were further isolated based on activity-guided isolation using silica-gel column chromatography, RP-C18 MPLC and prep-HPLC. As the results, 2 flavonoids including 6-methoxynaringenin (1) and 6-O-methylscutellarein (5), and 6 neo-clerodane diterpenes such as scutebarbatine W (2), scutebatas B (3), scutebarbatine B (4), scutebarbatine A (6), 6-O-nicotinolylscutebarbatine G (7), and scutebarbatine X (8) were isolated. The structures of these compounds were elucidated based on NMR and MS data, and the comparison of literature values. All the compounds except compound 7 inhibited NO production efficiently with IC50 values of lower than 50 µm. Particularly, compounds 1 and 8 were the most efficient with IC50 values of 25.8 and 27.4 µm, respectively. This is the first report suggesting the potential of S. barbata on the reduction of neuroinflammation.


Subject(s)
Nitric Oxide/metabolism , Scutellaria/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Survival/drug effects , Chromatography, Gel , Chromatography, High Pressure Liquid , Lipopolysaccharides/toxicity , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Microglia/cytology , Microglia/drug effects , Microglia/metabolism , Molecular Conformation , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Plant Extracts/chemistry , Scutellaria/metabolism
9.
Int J Mol Sci ; 18(3)2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28257068

ABSTRACT

Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2 (TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by enzymelinked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be specifically monitored in clinical studies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Photoreceptor Cells/drug effects , Photoreceptor Cells/metabolism , Ranibizumab/pharmacology , Recombinant Fusion Proteins/pharmacology , Stress, Physiological , Cell Survival/drug effects , Cells, Cultured , Eye Proteins/metabolism , Gene Expression , Glucose/pharmacology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Hypoxia/metabolism , Nerve Growth Factors/metabolism , Receptors, Vascular Endothelial Growth Factor , Retinol-Binding Proteins/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
10.
Heart Lung Circ ; 26(5): 519-523, 2017 May.
Article in English | MEDLINE | ID: mdl-27743854

ABSTRACT

BACKGROUND: Exenatide exerts cardioprotective effects by attenuating ischaemic reperfusion (IR) injury, possibly through activating the opening of mitochondrial ATP-sensitive potassium channels. We used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties in order to assess exenatide-mediated cardioprotection in IR injury. METHODS: We used an in vivo Sprague-Dawley rat IR model and ex vivo Langendorff injury model. In the left anterior descending artery (LAD) occlusion model, animals were randomly divided into three groups: sham-operated rats (Sham, n=5), IR-injured rats treated with placebo (IR, n=6), and IR-injured treated with exenatide (IR + EXE, n=6). For the Langendorff model, rats were randomly divided into two groups: IR injury with placebo (IR, n=4) and IR injury with exenatide (IR+EXE, n=4). Morphological and mechanical changes of mitochondria were analysed by AFM. RESULTS: Exenatide pre-treatment improved cardiac function as evidenced by improvement in echocardiographic results. The ratio of infarct area (IA) to risk area (RA) was significantly reduced in exenatide-treated rats. According to AFM, IR significantly increased the area of isolated mitochondria, indicative of mitochondrial swelling. Treatment with exenatide reduced the mitochondrial area and ameliorated the adhesion force of mitochondrial surfaces. CONCLUSIONS: Exenatide pre-treatment improves morphological and mechanical characteristics of mitochondria in response to IR injury in a rat model. These alterations in mitochondrial characteristics appear to play a cardioprotective role against IR injury.


Subject(s)
Echocardiography , Mitochondria, Heart , Myocardial Reperfusion Injury , Peptides/pharmacology , Venoms/pharmacology , Animals , Disease Models, Animal , Exenatide , Male , Microscopy, Atomic Force , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Sprague-Dawley
11.
J Cell Sci ; 126(Pt 1): 67-76, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23203799

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) is known to be both anti-inflammatory and profibrotic. Cross-talk between TGF-ß/Smad and Wnt/ß-catenin pathways in epithelial-mesenchymal transition (EMT) suggests a specific role for ß-catenin in profibrotic effects of TGF-ß1. However, no such mechanistic role has been demonstrated for ß-catenin in the anti-inflammatory effects of TGF-ß1. In the present study, we explored the role of ß-catenin in the profibrotic and anti-inflammatory effects of TGF-ß1 by using a cytosolic, but not membrane, ß-catenin knockdown chimera (F-TrCP-Ecad) and the ß-catenin/CBP inhibitor ICG-001. TGF-ß1 induced nuclear Smad3/ß-catenin complex, but not ß-catenin/LEF-1 complex or TOP-flash activity, during EMT of C1.1 (renal tubular epithelial) cells. F-TrCP-Ecad selectively degraded TGF-ß1-induced cytoplasmic ß-catenin and blocked EMT of C1.1 cells. Both F-TrCP-Ecad and ICG-001 blocked TGF-ß1-induced Smad3/ß-catenin and Smad reporter activity in C1.1 cells, suggesting that TGF-ß1-induced EMT depends on ß-catenin binding to Smad3, but not LEF-1 downstream of Smad3, through canonical Wnt. In contrast, in J774 macrophages, the ß-catenin level was low and was not changed by interferon-γ (IFN-γ) or lipopolysaccharide (LPS) with or without TGF-ß1. TGF-ß1 inhibition of LPS-induced TNF-α and IFN-γ-stimulated inducible NO synthase (iNOS) expression was not affected by F-TrCP-Ecad, ICG-001 or by overexpression of wild-type ß-catenin in J774 cells. Inhibition of ß-catenin by either F-TrCP-Ecad or ICG-001 abolished LiCl-induced TOP-flash, but not TGF-ß1-induced Smad reporter, activity in J774 cells. These results demonstrate for the first time that ß-catenin is required as a co-factor of Smad in TGF-ß1-induced EMT of C1.1 epithelial cells, but not in TGF-ß1 inhibition of macrophage activation. Targeting ß-catenin may dissociate the TGF-ß1 profibrotic and anti-inflammatory effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lymphoid Enhancer-Binding Factor 1/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/pharmacology , beta Catenin/metabolism , Animals , Blotting, Western , Cell Line , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Immunoprecipitation , Lymphoid Enhancer-Binding Factor 1/genetics , Mice , Microscopy, Fluorescence , Protein Binding/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Smad3 Protein/genetics , beta Catenin/genetics
12.
Org Biomol Chem ; 13(16): 4652-6, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25793456

ABSTRACT

Inspired by the Hegedus aza-Wacker indole synthesis, we were intrigued with the fate of the aminopalladation intermediate if syn ß-hydrogen is made inaccessible or unavailable. In contrast to our previously reported ß-carbon elimination, cyclization of a variety of 2-alkenylaniline substrates under electrophilic palladium conditions unexpectedly afforded C3-substituted indoles. This unusual 1,2-migratory process was found to be operative across a variety of substrates with predictable migratory aptitude. A mechanistic proposal was put forward to rationalize the observed substrate dependence, and this unexpected finding could provide an opportunity for other related processes.

13.
Heart Vessels ; 30(1): 115-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24510253

ABSTRACT

Lysophosphatidylcholine (LPC) generated from oxidized low-density lipoprotein by lipoprotein-associated phospholipase A2 plays a key role in plaque inflammation and vulnerability. Endothelial progenitor cells (EPCs) can repair injured endothelium and exert anti-inflammatory effects of vulnerable plaque. We study the impact and mechanisms of LPC on UEA-1 and acLDL binding EPCs (UEA-1(+)acLDL(+) EPCs). UEA-1(+)acLDL(+) EPCs from coronary artery disease (CAD) patients were cultured and exposed to LPC at different concentrations and different timepoints. We determined the significant concentration (40 µM). UEA-1(+)acLDL(+) EPCs were preincubated for 30 min with pravastatin (20 µM) with LY249002, a specific inhibitor of the Akt signaling pathway, and exposed for 24 h to LPC 40 µM. The survival, migration, adhesion, and proliferation of UEA-1(+)acLDL(+) EPCs were assessed. To examine the mechanisms of LPC toxicity and pravastatin effects, phosphorylated Akt and endothelial nitric oxide synthase (eNOS) levels and the ratio of Bcl-2/Bax protein expression were assessed. LPC induced apoptosis and impaired migration and adhesion of UEA-1(+)acLDL(+) EPCs significantly. The detrimental effects of LPC were attenuated by pravastatin. However, when UEA-1(+)acLDL(+) EPCs were pretreated with pravastatin and LY249002, a specific inhibitor of the Akt signaling pathway, simultaneously, the beneficial effects of pravastatin were abolished. Furthermore, LPC suppressed Akt and eNOS phosphorylation and increased Bcl-2/Bax expression. The effects of LPC on Akt/eNOS and Bcl-2/Bax activity were reversed by pravastatin. In conclusion, LPC inhibited UEA-1(+)acLDL(+) EPCs survival and impaired its functions, and these were attributable to inhibition of the Akt/eNOS and Bcl-2/Bax pathway. Pravastatin reversed the detrimental action of LPC. These findings suggest that LPC inhibition can be a possible strategy for CAD through EPC revitalization.


Subject(s)
Coronary Artery Disease/physiopathology , Endothelial Progenitor Cells/drug effects , Lipoproteins, LDL/metabolism , Lysophosphatidylcholines/antagonists & inhibitors , Plant Lectins/metabolism , Pravastatin/pharmacology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Endothelial Progenitor Cells/metabolism , Female , Humans , Leukocytes, Mononuclear/drug effects , Lipoproteins, LDL/antagonists & inhibitors , Lysophosphatidylcholines/toxicity , Male , Middle Aged , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/metabolism
14.
Glia ; 62(7): 1110-24, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24687761

ABSTRACT

Retinal diseases such as macular telangiectasis type 2 (MacTel), age-related macular degeneration (AMD) and diabetic retinopathy (DR) affect both neurons and blood vessels. Treatments addressing both at the same time might have advantages over more specific approaches, such as vascular endothelial growth factor (VEGF) inhibitors, which are used to treat vascular leak but are suspected to have a neurotoxic effect. Here, we studied the effects of an intravitreal injection of triamcinolone acetonide (TA) in a transgenic model in which patchy Müller cell ablation leads to photoreceptor degeneration, vascular leak, and intraretinal neovascularization. TA was injected 4 days before Müller cell ablation. Changes in photoreceptors, microglia and Müller cells, retinal vasculature, differential expression of p75 neurotrophin receptor (p75(NTR) ), tumor necrosis factor-α (TNFα), the precursor and mature forms of neurotrophin 3 (pro-NT3 and mature NT3) and activation of the p53 and p38 stress-activated protein kinase (p38/SAPK) signaling pathways were examined. We found that TA prevented photoreceptor degeneration and inhibited activation of microglial and Müller cells. TA attenuated Müller cell loss and inhibited overexpression of p75(NTR) , TNFα, pro-NT, and the activation of p53 and p38/SAPK signaling pathways. TA not only prevented the development of retinal vascular lesions but also inhibited fluorescein leakage from established vascular lesions. TA inhibited overexpression of VEGF in transgenic mice but without affecting its basal level expression in the normal retina. Our data suggest that glucocorticoid treatment may be beneficial for treatment of retinal diseases such as MacTel, AMD, and DR that affect both neurons and the vasculature.


Subject(s)
Ependymoglial Cells/drug effects , Neuroprotective Agents/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Retinal Diseases/drug therapy , Retinal Vessels/drug effects , Triamcinolone Acetonide/pharmacology , Animals , Cell Death/drug effects , Cell Death/physiology , Ependymoglial Cells/pathology , Ependymoglial Cells/physiology , Gliosis/drug therapy , Gliosis/pathology , Gliosis/physiopathology , Glucocorticoids/pharmacology , MAP Kinase Signaling System/drug effects , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Microglia/physiology , Mitogen-Activated Protein Kinase 8/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Neurotrophin 3/metabolism , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/physiology , Receptors, Nerve Growth Factor/metabolism , Retinal Diseases/pathology , Retinal Diseases/physiopathology , Retinal Vessels/pathology , Retinal Vessels/physiopathology , Tamoxifen , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Clin Exp Pharmacol Physiol ; 41(10): 763-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25115773

ABSTRACT

Sildenafil exerts cardioprotective effects by activating the opening of mitochondrial ATP-sensitive potassium channels to attenuate ischaemia-reperfusion (IR) injury. In the present study, we used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties to assess sildenafil-mediated cardioprotection in a rat myocardial infarction model. To investigate the cardioprotective effects of sildenafil, we used an in vivo Sprague-Dawley rat model of IR. Rats were randomly divided into three groups: (i) sham-operated rats (control; n = 5); (ii) IR-injured rats treated with vehicle (normal saline; IR; n = 10); and (iii) IR-injured rats treated with 0.75 mg/kg, i.p., sildenafil (IR + Sil; n = 10). Morphological and mechanical changes to mitochondria were analysed by AFM. Infarct areas were significantly reduced in sildenafil-treated rats (7.8 ± 3.9% vs 20.4 ± 7.0% in the sildenafil-treated and untreated IR groups, respectively; relative reduction 62%; P < 0.001). Analysis of mitochondria by AFM showed that IR injury significantly increased the areas of isolated mitochondria compared with control (24 150 ± 18 289 vs 1495 ± 1139 nm(2) , respectively; P < 0.001), indicative of mitochondrial swelling. Pretreatment with sildenafil before IR injury reduced the mitochondrial areas (7428 ± 3682 nm(2) ; P < 0.001; relative reduction 69.2% compared with the IR group) and ameliorated the adhesion force of mitochondrial surfaces. Together, these results suggest that sildenafil has cardioprotective effects against IR injury in a rat model by improving the morphological and mechanical characteristics of mitochondria.


Subject(s)
Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Myocardial Reperfusion Injury/drug therapy , Myocardium/ultrastructure , Piperazines/pharmacology , Reperfusion Injury/drug therapy , Sulfonamides/pharmacology , Animals , Mitochondria, Heart/metabolism , Mitochondrial Swelling/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Potassium Channels/metabolism , Purines/pharmacology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Sildenafil Citrate
16.
Lab Invest ; 93(4): 434-49, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23358111

ABSTRACT

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.


Subject(s)
Kidney Diseases/immunology , Kidney/pathology , Matrix Metalloproteinase 9/metabolism , Osteopontin/metabolism , Ureteral Obstruction/metabolism , Animals , Cell Movement , Cells, Cultured , Epithelial Cells/physiology , Epithelial-Mesenchymal Transition , Fibrosis , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Macrophages/physiology , Mice , Mice, Inbred BALB C , Snail Family Transcription Factors , Transcription Factors/metabolism , beta Catenin/metabolism
17.
J Neuroinflammation ; 10: 137, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24224958

ABSTRACT

BACKGROUND: Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration. This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor (P75(NTR)) in photoreceptor degeneration in this model. METHODS: Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and microglia cells as well as expression of mature NT3, pro-NT3 and P75(NTR) were examined by immunohistochemistry and Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75(NTR) were injected intravitreally 3 and 6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation. RESULTS: We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75(NTR). Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination, attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial activation. CONCLUSIONS: Our data suggest that Müller cell ablation alters the balance between the protective and deleterious effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic pro-NT3/P75(NTR) signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal disease.


Subject(s)
Neurotrophin 3/metabolism , Receptors, Nerve Growth Factor/metabolism , Retinal Degeneration/metabolism , Animals , Blotting, Western , Ependymoglial Cells/pathology , Immunohistochemistry , Mice , Mice, Transgenic , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Retinal Degeneration/pathology
18.
Appl Microbiol Biotechnol ; 93(3): 1147-56, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21959378

ABSTRACT

A 14-membered macrolide antibiotic narbomycin produced from Streptomyces venezuelae ATCC 15439 is composed of polyketide macrolactone ring and D-desosamine as a deoxysugar moiety, which acts as an important determinant of its antibacterial activity. In order to generate diverse glycosylated derivatives of narbomycin, expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into S. venezuelae YJ003 mutant strain bearing a deletion of thymidine-5'-diphospho-D-desosamine biosynthetic gene cluster. The resulting recombinants of S. venezuelae produced a range of new analogs of narbomycin, which possess unnatural sugar moieties instead of native deoxysugar D-desosamine. The structures of narbomycin derivatives were determined through nuclear magnetic resonance spectroscopy and mass spectrometry analyses and their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with L-rhamnose or 3-O-demethyl-D-chalcose was demonstrated to exhibit greater antibacterial activity than narbomycin and the clinically relevant erythromycin. This work provides new insight into the functions of deoxysugar biosynthetic enzymes and structure-activity relationships of the sugar moieties attached to the macrolides and demonstrate the potential of combinatorial biosynthesis for the generation of new macrolides carrying diverse sugars with increased antibacterial activities.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Genetic Engineering/methods , Macrolides/metabolism , Macrolides/pharmacology , Streptomyces/metabolism , Anti-Bacterial Agents/chemistry , Enterococcus faecium/drug effects , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Macrolides/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Mutation , Plasmids , Staphylococcus aureus/drug effects , Streptomyces/enzymology , Streptomyces/genetics , Structure-Activity Relationship
19.
Sci Rep ; 12(1): 19312, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369267

ABSTRACT

The common final pathway to blindness in many forms of retinal degeneration is the death of the light-sensitive primary retinal neurons. However, the normally light-insensitive second- and third-order neurons persist optogenetic gene therapy aims to restore sight by rendering such neurons light-sensitive. Here, we investigate whether bReaChES, a newly described high sensitivity Type I opsin with peak sensitivity to long-wavelength visible light, can restore vision in a murine model of severe early-onset retinal degeneration. Intravitreal injection of an adeno-associated viral vector carrying the sequence for bReaChES downstream of the calcium calmodulin kinase IIα promoter resulted in sustained retinal expression of bReaChES. Retinal ganglion cells (RGCs) expressing bReaChES generated action potentials at light levels consistent with bright indoor lighting (from 13.6 log photons cm-2 s-1). They could also detect flicker at up to 50 Hz, which approaches the upper temporal limit of human photopic vision. Topological response maps of bReaChES-expressing RGCs suggest that optogenetically activated RGCs may demonstrate similar topographical responses to RGCs stimulated by photoreceptor activation. Furthermore, treated dystrophic mice displayed restored cortical neuronal activity in response to light and rescued behavioral responses to a looming stimulus that simulated an aerial predator. Finally, human surgical retinal explants exposed to the bReaChES treatment vector demonstrated transduction. Together, these findings suggest that intravitreal gene therapy to deliver bReaChES to the retina may restore vision in human retinal degeneration in vivo at ecologically relevant light levels with spectral and temporal response characteristics approaching those of normal human photopic vision.


Subject(s)
Retinal Degeneration , Mice , Humans , Animals , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/metabolism , Optogenetics/methods , Rod Opsins/metabolism , Retinal Ganglion Cells/metabolism
20.
Theranostics ; 12(15): 6705-6722, 2022.
Article in English | MEDLINE | ID: mdl-36185611

ABSTRACT

Rationale: Müller cells play an essential role in maintaining the health of retinal photoreceptors. Dysfunction of stressed Müller cells often results in photoreceptor degeneration. However, how these cells communicate under stress and the signalling pathways involved remain unclear. In this study, we inhibited the MAPK (ERK1/2) signalling, mainly activated in Müller cells, evaluated the protective effects on the photoreceptors and further explored the signalling communication between stressed Müller cells and degenerating photoreceptors. Methods: We evaluated the changes of MAPK (ERK1/2) signalling and its downstream targets in human retinal explants treated with PD98059, a specific phosphorylated ERK1/2 inhibitor, by western blot and immunostaining. We further assessed photoreceptor degeneration by TUNEL staining and outer nuclear layer thickness. We also injected PD98059 into the eyes of mice exposed to photo-oxidative stress. We evaluated the protective effects on photoreceptor degeneration by optical coherence tomography (OCT) and electroretinography (ERG). The crosstalk between Müller cells and photoreceptors was further dissected based on the changes of transcription factors by RNA sequencing and protein profiles of multiple signalling pathways. Results: We found that MAPK (ERK1/2) signalling was mainly activated in Müller cells under stress, both ex vivo and in vivo. PD98059 inhibited the phosphorylation of ERK1/2, reduced expression of the gliotic marker glial fibrillary acidic protein (GFAP) in Müller cells and increased levels of the neuroprotective factor, interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors. Inhibition of pERK1/2 also reduced retinal photo-oxidative damage in mice retinas assessed by OCT and ERG. We also identified that the JAK/STAT3 signalling pathway might mediate signalling transduction from Müller cells to photoreceptors. Conclusion: MAPK (ERK1/2) deactivation through chemical inhibition, mainly in stressed Müller cells, can alleviate gliosis in Müller cells and restore the expression of IRBP in photoreceptors, which appears to prevent retinal degeneration. Our findings suggested a new way to prevent photoreceptor degeneration by manipulating the stress response in Müller cells.


Subject(s)
Retinal Degeneration , Animals , Ependymoglial Cells , Glial Fibrillary Acidic Protein/metabolism , Humans , MAP Kinase Signaling System , Mice , Retinal Degeneration/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL