Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Proc Natl Acad Sci U S A ; 120(10): e2216975120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848579

ABSTRACT

Over the last few decades, symbiosis and the concept of holobiont-a host entity with a population of symbionts-have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (102 to 103 times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned.


Subject(s)
Biomineralization , Electrons , Physical Phenomena , Biophysics
2.
Environ Microbiol ; 24(2): 721-736, 2022 02.
Article in English | MEDLINE | ID: mdl-33687779

ABSTRACT

Obtaining high biomass yields of specific microorganisms for culture-independent approaches is a challenge faced by scientists studying organism's recalcitrant to laboratory conditions and culture. This difficulty is highly decreased when studying magnetotactic bacteria (MTB) since their unique behaviour allows their enrichment and purification from other microorganisms present in aquatic environments. Here, we use Lake Pavin, a permanently stratified lake in the French Massif Central, as a natural laboratory to optimize collection and concentration of MTB that thrive in the water column and sediments. A method is presented to separate MTB from highly abundant abiotic magnetic particles in the sediment of this crater lake. For the water column, different sampling approaches are compared such as in situ collection using a Niskin bottle and online pumping. By monitoring several physicochemical parameters of the water column, we identify the ecological niche where MTB live. Then, by focusing our sampling at the peak of MTB abundance, we show that the online pumping system is the most efficient for fast recovering of large volumes of water at a high spatial resolution, which is necessary considering the sharp physicochemical gradients observed in the water column. Taking advantage of aerotactic and magnetic MTB properties, we present an efficient method for MTB concentration from large volumes of water. Our methodology represents a first step for further multidisciplinary investigations of the diversity, metagenomic and ecology of MTB populations in Lake Pavin and elsewhere, as well as chemical and isotopic analyses of their magnetosomes.


Subject(s)
Lakes , Magnetosomes , Bacteria/genetics , Ecosystem , Lakes/microbiology , Metagenomics , Phylogeny
3.
Environ Microbiol ; 22(9): 3611-3632, 2020 09.
Article in English | MEDLINE | ID: mdl-32452098

ABSTRACT

Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.


Subject(s)
Bacteria/metabolism , Iron/metabolism , Magnetosomes/metabolism , Magnetic Phenomena , Magnetite Nanoparticles , Sulfides/metabolism
4.
Nanomedicine ; 23: 102084, 2020 01.
Article in English | MEDLINE | ID: mdl-31454552

ABSTRACT

Although chemically synthesized ferro/ferrimagnetic nanoparticles have attracted great attention in cancer theranostics, they lack radio-enhancement efficacy due to low targeting and internalization ability. Herein, we investigated the potential of RGD-tagged magnetosomes, bacterial biogenic magnetic nanoparticles naturally coated with a biological membrane and genetically engineered to express an RGD peptide, as tumor radioenhancers for conventional radiotherapy and proton therapy. Although native and RGD-magnetosomes similarly enhanced radiation-induced damage to plasmid DNA, RGD-magnetoprobes were able to boost the efficacy of radiotherapy to a much larger extent than native magnetosomes both on cancer cells and in tumors. Combined to magnetosomes@RGD, proton therapy exceeded the efficacy of X-rays at equivalent doses. Also, increased secondary emissions were measured after irradiation of magnetosomes with protons versus photons. Our results indicate the therapeutic advantage of using functionalized magnetoparticles to sensitize tumors to both X-rays and protons and strengthen the case for developing biogenic magnetoparticles for multimodal nanomedicine in cancer therapy.


Subject(s)
Magnetosomes/chemistry , Magnetospirillum/chemistry , Neoplasms, Experimental/radiotherapy , Oligopeptides , Radiation-Sensitizing Agents , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Proton Therapy , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , X-Ray Therapy
6.
Nano Lett ; 19(11): 8207-8215, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31565946

ABSTRACT

Protein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling, and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nanoparticles in magnetotactic bacteria has become an excellent model system. Most interestingly, nanoparticle morphologies have been discovered that defy crystallographic rules (e.g., in the species Desulfamplus magnetovallimortis strain BW-1). In certain conditions, this strain mineralizes bullet-shaped magnetite nanoparticles, which exhibit defined (111) crystal faces and are elongated along the [100] direction. We hypothesize that surface-specific protein interactions break the nanoparticle symmetry, inhibiting the growth of certain crystal faces and thereby favoring the growth of others. Screening the genome of BW-1, we identified Mad10 (Magnetosome-associated deep-branching) as a potential magnetite-binding protein. Using atomic force microscope (AFM)-based single-molecule force spectroscopy, we show that a Mad10-derived peptide, which represents the most conserved region of Mad10, binds strongly to (100)- and (111)-oriented single-crystalline magnetite thin films. The peptide-magnetite interaction is thus material- but not crystal-face-specific. It is characterized by broad rupture force distributions that do not depend on the retraction speed of the AFM cantilever. To account for these experimental findings, we introduce a three-state model that incorporates fast rebinding. The model suggests that the peptide-surface interaction is strong in the absence of load, which is a direct result of this fast rebinding process. Overall, our study sheds light on the kinetic nature of peptide-surface interactions and introduces a new magnetite-binding peptide with potential use as a functional coating for magnetite nanoparticles in biotechnological and biomedical applications.


Subject(s)
Bacterial Proteins/metabolism , Deltaproteobacteria/metabolism , Ferrosoferric Oxide/metabolism , Magnetosomes/metabolism , Peptides/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Biomineralization , Deltaproteobacteria/chemistry , Deltaproteobacteria/ultrastructure , Ferrosoferric Oxide/chemistry , Magnetosomes/chemistry , Magnetosomes/ultrastructure , Peptides/chemistry
7.
Environ Microbiol ; 20(12): 4415-4430, 2018 12.
Article in English | MEDLINE | ID: mdl-30043533

ABSTRACT

Ecological and evolutionary processes involved in magnetotactic bacteria (MTB) adaptation to their environment have been a matter of debate for many years. Ongoing efforts for their characterization are progressively contributing to understand these processes, including the genetic and molecular mechanisms responsible for biomineralization. Despite numerous culture-independent MTB characterizations, essentially within the Proteobacteria phylum, only few species have been isolated in culture because of their complex growth conditions. Here, we report a newly cultivated magnetotactic, microaerophilic and chemoorganoheterotrophic bacterium isolated from the Mediterranean Sea in Marseille, France: Candidatus Terasakiella magnetica strain PR-1 that belongs to an Alphaproteobacteria genus with no magnetotactic relative. By comparing the morphology and the whole genome shotgun sequence of this MTB with those of closer relatives, we brought further evidence that the apparent vertical ancestry of magnetosome genes suggested by previous studies within Alphaproteobacteria hides a more complex evolutionary history involving horizontal gene transfers and/or duplication events before and after the emergence of Magnetospirillum, Magnetovibrio and Magnetospira genera. A genome-scale comparative genomics analysis identified several additional candidate functions and genes that could be specifically associated to MTB lifestyle in this class of bacteria.


Subject(s)
Alphaproteobacteria/genetics , Evolution, Molecular , Magnetosomes/genetics , France , Gene Transfer, Horizontal , Genome, Bacterial , Magnetics , Mediterranean Sea , Water Microbiology
8.
Appl Environ Microbiol ; 84(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29439993

ABSTRACT

Magnetotactic bacteria (MTB) represent a group of microorganisms that are widespread in aquatic habitats and thrive at oxic-anoxic interfaces. They are able to scavenge high concentrations of iron thanks to the biomineralization of magnetic crystals in their unique organelles, the so-called magnetosome chains. Although their biodiversity has been intensively studied, their ecology and impact on iron cycling remain largely unexplored. Predation by protozoa was suggested as one of the ecological processes that could be involved in the release of iron back into the ecosystem. Magnetic protozoa were previously observed in aquatic environments, but their diversity and the fate of particulate iron during grazing are poorly documented. In this study, we report the morphological and molecular characterizations of a magnetically responsive MTB-grazing protozoan able to ingest high quantities of MTB. This protozoan is tentatively identified as Uronema marinum, a ciliate known to be a predator of bacteria. Using light and electron microscopy, we investigated in detail the vacuoles in which the lysis of phagocytized prokaryotes occurs. We carried out high-resolution observations of aligned magnetosome chains and ongoing dissolution of crystals. Particulate iron in the ciliate represented approximately 0.01% of its total volume. We show the ubiquity of this interaction in other types of environments and describe different grazing strategies. These data contribute to the mounting evidence that the interactions between MTB and protozoa might play a significant role in iron turnover in microaerophilic habitats.IMPORTANCE Identifying participants of each biogeochemical cycle is a prerequisite to our understanding of ecosystem functioning. Magnetotactic bacteria (MTB) participate in iron cycling by concentrating large amounts of biomineralized iron minerals in their cells, which impacts their chemical environment at, or below, the oxic-anoxic transition zone in aquatic habitats. It was shown that some protozoa inhabiting this niche could become magnetic by the ingestion of magnetic crystals biomineralized by grazed MTB. In this study, we show that magnetic MTB grazers are commonly observed in marine and freshwater sediments and can sometimes accumulate very large amounts of particulate iron. We describe here different phagocytosis strategies, determined using magnetic particles from MTB as tracers after their ingestion by the protozoa. This study paves the way for potential scientific or medical applications using MTB grazers as magnetosome hyperaccumulators.


Subject(s)
Bacteria , Ferrosoferric Oxide/chemistry , Food Chain , Magnetosomes/metabolism , Oligohymenophorea/chemistry , Bacteria/chemistry , France , Oligohymenophorea/physiology , Solubility
9.
Int J Syst Evol Microbiol ; 67(5): 1491-1498, 2017 May.
Article in English | MEDLINE | ID: mdl-27983471

ABSTRACT

A novel non-phototrophic, marine, sulfur-oxidizing bacterium, strain S-1T, was isolated from a coastal salt marsh in Massachusetts, USA. Cells are Gram-stain-negative vibrios motile by means of a single polar unsheathed flagellum. S-1T is an obligate microaerophile with limited metabolic capacity. It grows chemolithoautotrophically utilizing sulfide and thiosulfate as electron donors, converting these compounds to sulfate, and the Calvin-Benson-Bassham cycle for carbon fixation. Cells of S-1T did not grow on any of a large number of organic carbon sources and there was no evidence for chemoorganoheterotrophic growth. Cells produced internal sulfur globules during growth on sulfide and thiosulfate. S-1T is strongly diazotrophic, as demonstrated by 15N2 fixation and acetylene reduction activity by cells when a fixed nitrogen source is absent from the growth medium. The marine nature of this organism is evident from its ability to grow in 10 to 100 % artificial seawater but not at lower concentrations and NaCl alone cannot substitute for sea salts. The major cellular fatty acids are C16 : 1ω7c, C16 : 0, and C18 : 1ω7c. Phosphatidylethanolamine and phosphatidylglycerol are the major polar lipids. Q8 is the only respiratory quinone. S-1T genomic DNA has a G+C content of 67.6 mol%. Based on its 16S rRNA gene sequence, S-1T shows the closest phylogenetic relationship to non-phototrophic species within the family Thioalkalispiraceae of the class Gammaproteobacteria. The name Endothiovibrio diazotrophicus is proposed for this organism, with S-1T as the type strain (ATCC BAA-1439T=JCM 17961T).


Subject(s)
Gammaproteobacteria/classification , Nitrogen Fixation , Phylogeny , Water Microbiology , Wetlands , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Massachusetts , Nitrogen/metabolism , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism
10.
Biophys J ; 107(2): 527-538, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25028894

ABSTRACT

Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting organisms that have a specific type of aerotaxis that allows them to compete at the oxic-anoxic interface. They biomineralize magnetosomes, intracellular membrane-coated magnetic nanoparticles, that comprise a permanent magnetic dipole that causes the cells to align along magnetic field lines. The magnetic alignment enables them to efficiently migrate toward an optimal oxygen concentration in microaerobic niches. This phenomenon is known as magneto-aerotaxis. Magneto-aerotaxis has only been characterized in a limited number of available cultured strains. In this work, we characterize the magneto-aerotactic behavior of 12 magnetotactic bacteria with various morphologies, phylogenies, physiologies, and flagellar apparatus. We report six different magneto-aerotactic behaviors that can be described as a combination of three distinct mechanisms, including the reported (di-)polar, axial, and a previously undescribed mechanism we named unipolar. We implement a model suggesting that the three magneto-aerotactic mechanisms are related to distinct oxygen sensing mechanisms that regulate the direction of cells' motility in an oxygen gradient.


Subject(s)
Chemotaxis , Magnetospirillum/metabolism , Magnets , Oxygen/pharmacology , Bacterial Proteins/metabolism , Base Sequence , Magnetospirillum/drug effects , Magnetospirillum/physiology , Molecular Sequence Data , Oxygen/metabolism , Signal Transduction
11.
Environ Microbiol ; 15(8): 2267-74, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23438345

ABSTRACT

Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.


Subject(s)
Bacteria/classification , Bacteria/genetics , Magnetosomes/genetics , Phylogeny , Bacteria/metabolism , Base Sequence , DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Genomics , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics
12.
Environ Microbiol ; 15(10): 2712-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23607663

ABSTRACT

Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.


Subject(s)
Deltaproteobacteria/genetics , Ferrosoferric Oxide , Genome, Bacterial/genetics , Iron , Magnetosomes/genetics , Sulfides , Conserved Sequence , Deltaproteobacteria/classification , Magnetics , Molecular Sequence Data , Multigene Family/genetics , Phylogeny
13.
Int J Syst Evol Microbiol ; 63(Pt 3): 801-808, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22581902

ABSTRACT

Magnetotactic bacteria are a morphologically, metabolically and phylogenetically disparate array of bacteria united by the ability to biomineralize membrane-encased, single-magnetic-domain mineral crystals (magnetosomes) that cause the cell to orientate along the Earth's geomagnetic field. The most commonly observed type of magnetotactic bacteria is the ubiquitous magnetotactic cocci, which comprise their own phylogenetic group. Strain MC-1(T), a member of this group, was isolated from water collected from the oxic-anoxic interface of the Pettaquamscutt Estuary in Rhode Island, USA, and cultivated in axenic culture. Cells of strain MC-1(T) are roughly spherical, with two sheathed bundles of flagella at a single pole (bilophotrichous). Strain MC-1(T) uses polar magnetotaxis, and has a single chain of magnetite crystals per cell. Cells grow chemolithoautotrophically with thiosulfate or sulfide as the electron donors, and chemo-organoheterotrophically on acetate. During autotrophic growth, strain MC-1(T) relies on the reductive tricarboxylic acid cycle for CO2 fixation. The DNA G+C content is 54.2 mol%. The new genus and species Magnetococcus marinus gen. nov., sp. nov. are proposed to accommodate strain MC-1(T) ( = ATCC BAA-1437(T)  = JCM 17883(T)), which is nominated as the type strain of Magnetococcus marinus. A new order (Magnetococcales ord. nov.) and family (Magnetococcaceae fam. nov.) are proposed for the reception of Magnetococcus and related magnetotactic cocci, which are provisionally included in the Alphaproteobacteria as the most basal known lineage of this class.


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Citric Acid Cycle , DNA, Bacterial/genetics , Fatty Acids/analysis , Magnetosomes/microbiology , Molecular Sequence Data , Nitrogen Fixation , RNA, Ribosomal, 16S/genetics , Rhode Island , Seawater/microbiology , Sequence Analysis, DNA
14.
Int J Syst Evol Microbiol ; 63(Pt 5): 1824-1833, 2013 May.
Article in English | MEDLINE | ID: mdl-22984137

ABSTRACT

A magnetotactic bacterium, designated strain MV-1(T), was isolated from sulfide-rich sediments in a salt marsh near Boston, MA, USA. Cells of strain MV-1(T) were Gram-negative, and vibrioid to helicoid in morphology. Cells were motile by means of a single polar flagellum. The cells appeared to display a transitional state between axial and polar magnetotaxis: cells swam in both directions, but generally had longer excursions in one direction than the other. Cells possessed a single chain of magnetosomes containing truncated hexaoctahedral crystals of magnetite, positioned along the long axis of the cell. Strain MV-1(T) was a microaerophile that was also capable of anaerobic growth on some nitrogen oxides. Salinities greater than 10 % seawater were required for growth. Strain MV-1(T) exhibited chemolithoautotrophic growth on thiosulfate and sulfide with oxygen as the terminal electron acceptor (microaerobic growth) and on thiosulfate using nitrous oxide (N2O) as the terminal electron acceptor (anaerobic growth). Chemo-organoautotrophic and methylotrophic growth was supported by formate under microaerobic conditions. Autotrophic growth occurred via the Calvin-Benson-Bassham cycle. Chemo-organoheterotrophic growth was supported by various organic acids and amino acids, under microaerobic and anaerobic conditions. Optimal growth occurred at pH 7.0 and 26-28 °C. The genome of strain MV-1(T) consisted of a single, circular chromosome, about 3.7 Mb in size, with a G+C content of 52.9-53.5 mol%.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MV-1(T) belongs to the family Rhodospirillaceae within the Alphaproteobacteria, but is not closely related to the genus Magnetospirillum. The name Magnetovibrio blakemorei gen. nov., sp. nov. is proposed for strain MV-1(T). The type strain of Magnetovibrio blakemorei is MV-1(T) ( = ATCC BAA-1436(T)  = DSM 18854(T)).


Subject(s)
Phylogeny , Rhodospirillaceae/classification , Seawater/microbiology , Wetlands , Bacterial Typing Techniques , Base Composition , Boston , Chemoautotrophic Growth , DNA, Bacterial/genetics , Magnetosomes/microbiology , Molecular Sequence Data , Photosynthesis , RNA, Ribosomal, 16S/genetics , Rhodospirillaceae/genetics , Rhodospirillaceae/isolation & purification , Rhodospirillaceae/metabolism , Sequence Analysis, DNA , Sodium Chloride
15.
mBio ; 14(4): e0328222, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37318230

ABSTRACT

Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.

16.
mBio ; 14(5): e0164923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37823629

ABSTRACT

IMPORTANCE: To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.


Subject(s)
Magnetosomes , Magnetospirillum , Actins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Magnetospirillum/genetics , Magnetospirillum/metabolism , Magnetosomes/genetics , Magnetosomes/metabolism , Bacteria/metabolism
17.
Appl Environ Microbiol ; 78(20): 7238-48, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22865076

ABSTRACT

Vibrioid- to helical-shaped magnetotactic bacteria phylogenetically related to the genus Magnetospirillum were isolated in axenic cultures from a number of freshwater and brackish environments located in the southwestern United States. Based on 16S rRNA gene sequences, most of the new isolates represent new Magnetospirillum species or new strains of known Magnetospirillum species, while one isolate appears to represent a new genus basal to Magnetospirillum. Partial sequences of conserved mam genes, genes reported to be involved in the magnetosome and magnetosome chain formation, and form II of the ribulose-1,5-bisphosphate carboxylase/oxygenase gene (cbbM) were determined in the new isolates and compared. The cbbM gene was chosen for comparison because it is not involved in magnetosome synthesis; it is highly conserved and is present in all but possibly one of the genomes of the magnetospirilla and the new isolates. Phylogenies based on 16S rRNA, cbbM, and mam gene sequences were reasonably congruent, indicating that the genes involved in magnetotaxis were acquired by a common ancestor of the Magnetospirillum clade. However, in one case, magnetosome genes might have been acquired through horizontal gene transfer. Our results also extend the known diversity of the Magnetospirillum group and show that they are widespread in freshwater environments.


Subject(s)
Bacterial Proteins/genetics , Locomotion , Magnetics , Magnetospirillum/genetics , Phylogeny , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gene Transfer, Horizontal , Magnetospirillum/isolation & purification , Magnetospirillum/physiology , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Southwestern United States , Water Microbiology
18.
Int J Syst Evol Microbiol ; 62(Pt 10): 2443-2450, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22140150

ABSTRACT

A marine, magnetotactic bacterium, designated strain MMS-1(T), was isolated from mud and water from a salt marsh in Woods Hole, Massachusetts, USA, after enrichment in defined oxygen-concentration/redox-gradient medium. Strain MMS-1(T) is an obligate microaerophile capable of chemoorganoheterotrophic and chemolithoautotrophic growth. Optimal growth occurred at pH 7.0 and 24-26 °C. Chemolithoautotrophic growth occurred with thiosulfate as the electron donor and autotrophic carbon fixation was via the Calvin-Benson-Bassham cycle. The G+C content of the DNA of strain MMS-1(T) was 47.2 mol%. Cells were Gram-negative and morphologically variable, with shapes that ranged from that of a lima bean to fully helical. Cells were motile by means of a single flagellum at each end of the cell (amphitrichous). Regardless of whether grown in liquid or semi-solid cultures, strain MMS-1(T) displayed only polar magnetotaxis and possessed a single chain of magnetosomes containing elongated octahedral crystals of magnetite, positioned along the long axis of the cell. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MMS-1(T) belongs to the family Rhodospirillaceae within the Alphaproteobacteria, and is distantly related to species of the genus Magnetospirillum. Strain MMS-1(T) is therefore considered to represent a novel species of a new genus, for which the name Magnetospira thiophila gen. nov., sp. nov. is proposed. The type strain of Magnetospira thiophila is MMS-1(T) ( = ATCC BAA-1438(T) = JCM 17960(T)).


Subject(s)
Magnetosomes/microbiology , Phylogeny , Rhodospirillaceae/classification , Seawater/microbiology , Water Microbiology , Bacterial Typing Techniques , Base Composition , Chemoautotrophic Growth , DNA, Bacterial/genetics , Fatty Acids/analysis , Massachusetts , Molecular Sequence Data , Photosynthesis , RNA, Ribosomal, 16S/genetics , Rhodospirillaceae/genetics , Rhodospirillaceae/isolation & purification , Sequence Analysis, DNA , Wetlands
19.
Nat Commun ; 13(1): 5652, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163114

ABSTRACT

Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.


Subject(s)
Magnetosomes , Magnetospirillum , Actins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Magnetic Phenomena , Magnetosomes/genetics , Magnetospirillum/genetics , Magnetospirillum/metabolism , Phylogeny
20.
Adv Sci (Weinh) ; 9(28): e2203444, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35975419

ABSTRACT

Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3 S4 ) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe3 S4 ) and magnetite (Fe3 O4 ) in the cytoplasm is reported. BW-1 produces hundreds of spherical nanoparticles, composed of 1-2 nm substructures of a poorly crystalline hexagonal copper sulfide structure that remains in a thermodynamically unstable state. The particles appear to be surrounded by an organic matrix as found from staining and electron microscopy inspection. Differential proteomics suggests that periplasmic proteins, such as a DegP-like protein and a heavy metal-binding protein, could be involved in this biomineralization process. The unexpected periplasmic formation of copper sulfide nanoparticles in BW-1 reveals previously unknown possibilities for intracellular biomineralization that involves intriguing biological control and holds promise for biological metal recovery in times of copper shortage.


Subject(s)
Magnetosomes , Nanoparticles , Periplasmic Proteins , Bacteria , Biomineralization , Copper , Ferrosoferric Oxide/analysis , Ferrosoferric Oxide/metabolism , Iron , Magnetosomes/chemistry , Magnetosomes/metabolism , Periplasmic Proteins/analysis , Periplasmic Proteins/metabolism , Sulfides/analysis , Sulfides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL