Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Blood ; 140(8): 839-850, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35605176

ABSTRACT

The MURANO trial (A Study to Evaluate the Benefit of Venetoclax Plus Rituximab Compared With Bendamustine Plus Rituximab in Participants With Relapsed or Refractory Chronic Lymphocytic Leukemia [CLL]; ClinicalTrials.gov identifier #NCT02005471) reported superior progression-free survival (PFS) and overall survival (OS) with venetoclax-rituximab (VenR) vs bendamustine-rituximab (BR) in relapsed/refractory (R/R) CLL. Patients were randomized to 2 years of VenR (n = 194; rituximab for the first 6 months) or 6 months of BR (n = 195). Although undetectable minimal residual disease (uMRD) was achieved more often with VenR, the long-term implications of uMRD with this fixed-duration, chemotherapy-free regimen have not been explored. We report MRD kinetics and updated outcomes with 5 years' follow-up. Survival benefits with VenR vs BR were sustained (median PFS [95% confidence interval]: 53.6 [48.4, 57.0] vs 17.0 [15.5, 21.7] months, respectively, P < .0001; 5-year OS [95% confidence interval]: 82.1% [76.4, 87.8] vs 62.2% [54.8, 69.6], P < .0001). VenR was superior to BR, regardless of cytogenetic category. VenR-treated patients with uMRD at end of treatment (EOT; n = 83) had superior OS vs those with high-MRD+ (n = 12): 3-year post-EOT survival rates were 95.3% vs 72.9% (P = .039). In those with uMRD at EOT, median time to MRD conversion was 19.4 months. Of 47 patients with documented MRD conversion, 19 developed progressive disease (PD); median time from conversion to PD was 25.2 months. A population-based logistic growth model indicated slower MRD median doubling time post-EOT with VenR (93 days) vs BR (53 days; P = 1.2 × 10-7). No new safety signals were identified. Sustained survival, uMRD benefits, and durable responses support 2-year fixed-duration VenR treatment in R/R CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bendamustine Hydrochloride/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Humans , Neoplasm, Residual/drug therapy , Neoplasm, Residual/etiology , Recurrence , Rituximab/adverse effects , Sulfonamides
2.
Blood ; 120(2): 376-85, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22451422

ABSTRACT

The attrition rate for anticancer drugs entering clinical trials is unacceptably high. For multiple myeloma (MM), we postulate that this is because of preclinical models that overemphasize the antiproliferative activity of drugs, and clinical trials performed in refractory end-stage patients. We validate the Vk*MYC transgenic mouse as a faithful model to predict single-agent drug activity in MM with a positive predictive value of 67% (4 of 6) for clinical activity, and a negative predictive value of 86% (6 of 7) for clinical inactivity. We identify 4 novel agents that should be prioritized for evaluation in clinical trials. Transplantation of Vk*MYC tumor cells into congenic mice selected for a more aggressive disease that models end-stage drug-resistant MM and responds only to combinations of drugs with single-agent activity in untreated Vk*MYC MM. We predict that combinations of standard agents, histone deacetylase inhibitors, bromodomain inhibitors, and hypoxia-activated prodrugs will demonstrate efficacy in the treatment of relapsed MM.


Subject(s)
Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Boronic Acids/administration & dosage , Boronic Acids/pharmacology , Bortezomib , Disease Models, Animal , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Genes, myc , Humans , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Transgenic , Multiple Myeloma/blood , Multiple Myeloma/pathology , Myeloma Proteins/metabolism , Neoplasm Transplantation , Predictive Value of Tests , Pyrazines/administration & dosage , Pyrazines/pharmacology
3.
J Clin Oncol ; 38(34): 4042-4054, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32986498

ABSTRACT

PURPOSE: In previous analyses of the MURANO study, fixed-duration venetoclax plus rituximab (VenR) resulted in improved progression-free survival (PFS) compared with bendamustine plus rituximab (BR) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). At the 4-year follow-up, we report long-term outcomes, response to subsequent therapies, and the predictive value of molecular and genetic characteristics. PATIENTS AND METHODS: Patients with CLL were randomly assigned to 2 years of venetoclax (VenR for the first six cycles) or six cycles of BR. PFS, overall survival (OS), peripheral-blood minimal residual disease (MRD) status, genomic complexity (GC), and gene mutations were assessed. RESULTS: Of 389 patients, 194 were assigned to VenR and 195 to BR. Four-year PFS and OS rates were higher with VenR than BR, at 57.3% and 4.6% (hazard ratio [HR], 0.19; 95% CI, 0.14 to 0.25), and 85.3% and 66.8% (HR, 0.41; 95% CI, 0.26 to 0.65), respectively. Undetectable MRD (uMRD) at end of combination therapy (EOCT) was associated with superior PFS compared with low MRD positivity (HR, 0.50) and high MRD positivity (HR, 0.15). Patients in the VenR arm who received ibrutinib as their first therapy after progression (n = 12) had a reported response rate of 100% (10 of 10 evaluable patients); patients subsequently treated with a venetoclax-based regimen (n = 14) had a reported response rate of 55% (six of 11 evaluable patients). With VenR, the uMRD rate at end of treatment (EOT) was lower in patients with GC than in those without GC (P = .042); higher GC was associated with shorter PFS. Higher MRD positivity rates were seen with BIRC3 and BRAF mutations at EOCT and with TP53, NOTCH1, XPO1, and BRAF mutations at EOT. CONCLUSION: Efficacy benefits with fixed-duration VenR are sustained and particularly durable in patients who achieve uMRD. Salvage therapy with ibrutinib after VenR achieved high response rates. Genetic mutations and GC affected MRD rates and PFS.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/genetics , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Karyopherins/genetics , Progression-Free Survival , Proto-Oncogene Proteins B-raf/genetics , Receptor, Notch1/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Rituximab/administration & dosage , Rituximab/adverse effects , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Exportin 1 Protein
4.
Nat Commun ; 8: 14581, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262675

ABSTRACT

The Eµ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eµ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eµ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Mutation , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/genetics , Alleles , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , CRISPR-Cas Systems , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/immunology , Disease Models, Animal , Gene Editing , Gene Frequency , Janus Kinase 2/genetics , Janus Kinase 2/immunology , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-myc/immunology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/immunology , Repressor Proteins/immunology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , Whole Genome Sequencing
6.
Mol Cancer Ther ; 15(9): 2030-41, 2016 09.
Article in English | MEDLINE | ID: mdl-27406984

ABSTRACT

Targeting BET bromodomain proteins using small molecules is an emerging anticancer strategy with clinical evaluation of at least six inhibitors now underway. Although MYC downregulation was initially proposed as a key mechanistic property of BET inhibitors, recent evidence suggests that additional antitumor activities are important. Using the Eµ-Myc model of B-cell lymphoma, we demonstrate that BET inhibition with JQ1 is a potent inducer of p53-independent apoptosis that occurs in the absence of effects on Myc gene expression. JQ1 skews the expression of proapoptotic (Bim) and antiapoptotic (BCL-2/BCL-xL) BCL-2 family members to directly engage the mitochondrial apoptotic pathway. Consistent with this, Bim knockout or Bcl-2 overexpression inhibited apoptosis induction by JQ1. We identified lymphomas that were either intrinsically resistant to JQ1-mediated death or acquired resistance following in vivo exposure. Strikingly, in both instances BCL-2 was strongly upregulated and was concomitant with activation of RAS pathways. Eµ-Myc lymphomas engineered to express activated Nras upregulated BCL-2 and acquired a JQ1 resistance phenotype. These studies provide important information on mechanisms of apoptosis induction and resistance to BET-inhibition, while providing further rationale for the translation of BET inhibitors in aggressive B-cell lymphomas. Mol Cancer Ther; 15(9); 2030-41. ©2016 AACR.


Subject(s)
Apoptosis/genetics , Azepines/pharmacology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Triazoles/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm/genetics , Genes, myc , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/mortality , Lymphoma, B-Cell/pathology , Mice , Multigene Family , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL