Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Curr Rheumatol Rep ; 26(4): 144-154, 2024 04.
Article in English | MEDLINE | ID: mdl-38227172

ABSTRACT

PURPOSE OF REVIEW: Single-cell profiling, either in suspension or within the tissue context, is a rapidly evolving field. The purpose of this review is to outline recent advancements and emerging trends with a specific focus on studies in spondyloarthritis. RECENT FINDINGS: The introduction of sequencing-based approaches for the quantification of RNA, protein, or epigenetic modifications at single-cell resolution has provided a major boost to discovery-driven research. Fluorescent flow cytometry, mass cytometry, and image-based cytometry continue to evolve. Spatial transcriptomics and imaging mass cytometry have extended high-dimensional analysis to cells in tissues. Applications in spondyloarthritis include the indexing and functional characterization of cells, discovery of disease-associated cell states, and identification of signatures associated with therapeutic responses. Single-cell TCR-seq has provided evidence for clonal expansion of CD8+ T cells in spondyloarthritis. The use of single-cell profiling approaches in spondyloarthritis research is still in its early stages. Challenges include high cost and limited availability of diseased tissue samples. To harness the full potential of the rapidly expanding technical capabilities, large-scale collaborative efforts are imperative.


Subject(s)
Gene Expression Profiling , Humans , Gene Expression Profiling/methods
2.
Front Syst Neurosci ; 17: 1212213, 2023.
Article in English | MEDLINE | ID: mdl-37404868

ABSTRACT

Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.

3.
medRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808698

ABSTRACT

Objective: Multiple lines of evidence indicate that ankylosing spondylitis (AS) is a lymphocyte-driven disease. However, which lymphocyte populations are critical in AS pathogenesis is not known. In this study, we aimed to identify the key cell types mediating the genetic risk in AS using an unbiased integrative functional genomics approach. Methods: We integrated GWAS data with epigenomic and transcriptomic datasets of immune cells in healthy humans. To quantify enrichment of cell type-specific open chromatin regions or gene expression in AS risk loci, we used three published methods which have identified cell types for other diseases. Additionally, we performed co-localization analyses between GWAS risk loci and genetic variants associated with gene expression (eQTL) to find putative target genes of AS risk variants. Results: Natural killer (NK) cell-specific open chromatin regions are significantly enriched in heritability for AS, compared to other immune cell types such as T cells, B cells, and monocytes. This finding was consistent between two AS GWAS. Using RNA-seq data, we validated that genes in AS risk loci are enriched in NK cell-specific gene expression. Expression levels of AS-associated genes, such as RUNX3, TBX21, TNFRSF1A, and NPEPPS, were found to be highest in NK cells compared to five T cell subsets. Using the human Space-Time Gut Cell Atlas we found significant upregulation of AS-associated genes predominantly in NK cells. Co-localization analysis revealed four AS risk loci affecting regulation of candidate target genes in NK cells: two known loci, ERAP1 and TNFRSF1A, and two under-studied loci, ENTR1 (aka SDCCAG3) and B3GNT2. Conclusion: Our results point to NK cells as potential key drivers in the development of AS and highlight four putative target genes for functional follow-up in NK cells.

4.
Neuroglia ; 3(2): 73-83, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36909794

ABSTRACT

Humans with post-traumatic stress disorder (PTSD) exhibit sleep disturbances that include insomnia, nightmares, and enhanced daytime sleepiness. Sleep disturbances are considered a hallmark feature of PTSD; however, little is known about the cellular and molecular mechanisms regulating trauma-induced sleep disorders. Using a rodent model of PTSD called "Single Prolonged Stress" (SPS) we examined the requirement of the brain-type fatty acid binding protein Fabp7, an astrocyte expressed lipid-signaling molecule, in mediating trauma-induced sleep disturbances. We measured baseline sleep/wake parameters and then exposed Fabp7 knock-out (KO) and wild-type (WT) C57BL/6N genetic background control animals to SPS. Sleep and wake measurements were obtained immediately following the initial trauma exposure of SPS, and again 7 days later. We found that active-phase (dark period) wakefulness was similar in KO and WT at baseline and immediately following SPS; however, it was significantly increased after 7 days. These effects were opposite in the inactive-phase (light period), where KOs exhibited increased wake in baseline and following SPS, but returned to WT levels after 7 days. To examine the effects of Fabp7 on unconditioned anxiety following trauma, we exposed KO and WT mice to the light-dark box test before and after SPS. Prior to SPS, KO and WT mice spent similar amounts of time in the lit compartment. Following SPS, KO mice spent significantly more time in the lit compartment compared to WT mice. These results demonstrate that mutations in an astrocyte-expressed gene (Fabp7) influence changes in stress-dependent sleep disturbances and associated anxiety behavior.

5.
Diagnosis (Berl) ; 2(1): 21-28, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29540016

ABSTRACT

BACKGROUND: Neurological emergencies often pose diagnostic challenges for emergency physicians because these patients often present with atypical symptoms and standard imaging tests are imperfect. Misdiagnosis occurs due to a variety of errors. These can be classified as knowledge gaps, cognitive errors, and systems-based errors. The goal of this study was to describe these errors through review of quality assurance (QA) records. METHODS: This was a retrospective pilot study of patients with neurological emergency diagnoses that were missed or delayed at one urban, tertiary academic emergency department. Cases meeting inclusion criteria were identified through review of QA records. Three emergency physicians independently reviewed each case and determined the type of error that led to the misdiagnosis. Proportions, confidence intervals, and a reliability coefficient were calculated. RESULTS: During the study period, 1168 cases were reviewed. Forty-two cases were found to include a neurological misdiagnosis and twenty-nine were determined to be the result of an error. The distribution of error types was as follows: knowledge gap 45.2% (95% CI 29.2, 62.2), cognitive error 29.0% (95% CI 15.9, 46.8), and systems-based error 25.8% (95% CI 13.5, 43.5). Cerebellar strokes were the most common type of stroke misdiagnosed, accounting for 27.3% of missed strokes. CONCLUSIONS: All three error types contributed to the misdiagnosis of neurological emergencies. Misdiagnosis of cerebellar lesions and erroneous radiology resident interpretations of neuroimaging were the most common mistakes. Understanding the types of errors may enable emergency physicians to develop possible solutions and avoid them in the future.

SELECTION OF CITATIONS
SEARCH DETAIL