Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Biol Chem ; 298(5): 101901, 2022 05.
Article in English | MEDLINE | ID: mdl-35395245

ABSTRACT

Conformational flexibility in antibody-combining sites has been hypothesized to facilitate polyspecificity toward multiple unique epitopes and enable the limited germline repertoire to match an overwhelming diversity of potential antigens; however, elucidating the mechanisms of antigen recognition by flexible antibodies has been understandably challenging. Here, multiple liganded and unliganded crystal structures of the near-germline anticarbohydrate antibodies S25-2 and S25-39 are reported, which reveal an unprecedented diversity of complementarity-determining region H3 conformations in apparent equilibrium. These structures demonstrate that at least some germline or near-germline antibodies are flexible entities sensitive to their chemical environments, with conformational selection available as an evolved mechanism that preserves the inherited ability to recognize common pathogens while remaining adaptable to new threats.


Subject(s)
Antibodies , Complementarity Determining Regions , Antibodies/chemistry , Binding Sites, Antibody , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Crystallography, X-Ray , Germ Cells , Molecular Conformation , Protein Conformation
2.
J Biol Chem ; 298(4): 101745, 2022 04.
Article in English | MEDLINE | ID: mdl-35189140

ABSTRACT

Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaASLH) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaASLH accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaASLH-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division.


Subject(s)
Membrane Glycoproteins , Membrane Proteins , Paenibacillus , Polysaccharides , Protein Domains , Cell Wall/chemistry , Cell Wall/metabolism , Ligands , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Monosaccharides/metabolism , Paenibacillus/chemistry , Paenibacillus/metabolism , Polysaccharides/metabolism
3.
Glycobiology ; 28(8): 624-636, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29873711

ABSTRACT

Homologous glycosyltransferases GTA and GTB perform the final step in human ABO(H) blood group A and B antigen synthesis by transferring the sugar moiety from donor UDP-GalNAc/UDP-Gal to the terminal H antigen disaccharide acceptor. Like other GT-A fold family 6 glycosyltransferases, GTA and GTB undergo major conformational changes in two mobile regions, the C-terminal tail and internal loop, to achieve the closed, catalytic state. These changes are known to establish a salt bridge network among conserved active site residues Arg188, Asp211 and Asp302, which move to accommodate a series of discrete donor conformations while promoting loop ordering and formation of the closed enzyme state. However, the individual significance of these residues in linking these processes remains unclear. Here, we report the kinetics and high-resolution structures of GTA/GTB mutants of residues 188 and 302. The structural data support a conserved salt bridge network critical to mobile polypeptide loop organization and stabilization of the catalytically competent donor conformation. Consistent with the X-ray crystal structures, the kinetic data suggest that disruption of this salt bridge network has a destabilizing effect on the transition state, emphasizing the importance of Arg188 and Asp302 in the glycosyltransfer reaction mechanism. The salt bridge network observed in GTA/GTB structures during substrate binding appears to be conserved not only among other Carbohydrate Active EnZyme family 6 glycosyltransferases but also within both retaining and inverting GT-A fold glycosyltransferases. Our findings augment recently published crystal structures, which have identified a correlation between donor substrate conformational changes and mobile loop ordering.


Subject(s)
ABO Blood-Group System/chemistry , Glycosyltransferases/chemistry , ABO Blood-Group System/genetics , ABO Blood-Group System/metabolism , Arginine/chemistry , Arginine/metabolism , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Catalytic Domain , Crystallography, X-Ray , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Protein Domains
4.
Glycobiology ; 27(10): 966-977, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28575295

ABSTRACT

The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-ß-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-ß-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-ß-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the ß-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress.


Subject(s)
ABO Blood-Group System/metabolism , Glycosyltransferases/chemistry , Molecular Docking Simulation , Trisaccharides/metabolism , ABO Blood-Group System/chemistry , Binding Sites , Crystallography, X-Ray , Glycosyltransferases/metabolism , Humans , Protein Binding , Trisaccharides/chemistry
5.
Front Mol Biosci ; 11: 1470989, 2024.
Article in English | MEDLINE | ID: mdl-39391870

ABSTRACT

Introduction: S-layer anchoring in Paenibacillus alvei is enabled by a non-covalent interaction between an S-layer homology domain trimer and a secondary cell wall polymer (SCWP), ensuring the structural integrity of the bacterial cell wall. Within the SCWP repeat, pyruvylated ManNAc serves as the ligand and the UDP-GlcNAc-2-epimerase MnaA supplies UDP-ManNAc to SCWP biosynthesis. Methods: To better understand SCWP biosynthesis and identify strategies for inhibiting pathogens with comparable cell wall architecture, like Bacillus anthracis, MnaA and rational variants were produced in E. coli and their kinetic constants determined. The effect of UDP-GlcNAc as a predicted allosteric activator and tunicamycin as a potential inhibitor of MnaA was tested in vitro supported by molecular docking experiments. Additionally, wild-type MnaA was crystallized. Results: We present the crystal structure of unliganded P. alvei MnaA resolved at 2.20 Å. It adopts a GT-B fold consistent with other bacterial non-hydrolyzing UDP-GlcNAc 2-epimerases. A comparison of amino acid sequences reveals conservation of putative and known catalytic and allosteric-site residues in MnaA, which was confirmed through analysis of Q42A, Q69A, E135A and H241A MnaA variants. The kinetic parameters K M and k cat of MnaA were determined to be 3.91 mM and 33.44 s-1 for the forward, and 2.41 mM and 6.02 s-1 for the reverse reaction. While allosteric regulation by UDP-GlcNAc has been proposed as a mechanism for enzyme activation, UDP-GlcNAc was not found to be essential for UDP-ManNAc epimerization by P. alvei MnaA. However, the reaction rate doubled upon addition of 5% UDP-GlcNAc. Unexpectedly, the UDP-GlcNAc analog tunicamycin did not inhibit MnaA. Molecular docking experiments comparing tunicamycin binding of P. alvei MnaA and Staphylococcus aureus MnaA, which is inhibited by tunicamycin, revealed different residues exposed to the antibiotic excluding, those at the predicted allosteric site of P. alvei MnaA, corroborating tunicamycin resistance. Conclusion: The unliganded crystal structure of P. alvei MnaA reveals an open conformation characterized by an accessible cleft between the N- and C-terminal domains. Despite the conservation of residues involved in binding the allosteric activator UDP-GlcNAc, the enzyme is not strictly regulated by the substrate. Unlike S. aureus MnaA, the activity of P. alvei MnaA remains unaffected by tunicamycin.

6.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 623-632, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35503210

ABSTRACT

The structure of the antigen-binding fragment (Fab) of mouse monoclonal antibody 7H2.2 in complex with a 15-residue fragment from the metalloproteinase sperm acrosomal SLLP1 binding protein (SAS1B), which is a molecular and cellular candidate for both cancer therapy and female contraception, has been determined at 2.75 Šresolution by single-crystal X-ray diffraction. Although the crystallization conditions contained the final 148 C-terminal residues of SAS1B, the Fab was observed to crystallize in complex with a 15-residue fragment corresponding to one of only two elements of secondary structure that are predicted to be ordered within the C-terminal region of SAS1B. The antigen forms an amphipathic α-helix that binds the 7H2.2 combining site via hydrophilic residues in an epitope that spans the length of the antigen α-helix, with only two CH-π interactions observed along the edge of the interface between the antibody and antigen. Interestingly, the paratope contains two residues mutated away from the germline (YL32F and YH58R), as well as a ProH96-ThrH97-AspH98-AspH99 insertion within heavy chain CDR3. The intact 7H2.2 antibody exhibits high affinity for the SAS1B antigen, with 1:1 binding and nanomolar affinity for both the SAS1B C-terminal construct used for crystallization (3.38 ± 0.59 nM) and a 15-amino-acid synthetic peptide construct corresponding to the helical antigen observed within the crystal structure (1.60 ± 0.31 nM). The SAS1B-antibody structure provides the first structural insight into any portion of the subdomain architecture of the C-terminal region of the novel cancer-oocyte tumor surface neoantigen SAS1B and provides a basis for the targeted use of SAS1B.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Animals , Antibodies, Monoclonal/chemistry , Binding Sites, Antibody , Crystallography, X-Ray , Female , Immunoglobulin Fab Fragments/chemistry , Mice , Oocytes/metabolism , Protein Conformation
7.
FEMS Microbiol Lett ; 367(19)2020 10 16.
Article in English | MEDLINE | ID: mdl-33016320

ABSTRACT

We used error-prone PCR to generate mutations in a subtilisin protease-encoding gene, and screened for recombinants that expressed temperature-sensitive (TS) variants. From the dozens of mutations that we detected in the recombinant genes we found that those mutations that affected aspartate-75 had the most profound effect on temperature stability. We thus focused our analysis on two variants of subtilisin C, the more heat-sensitive variant 24 (V24), with amino acid changes D75G, L234M and Q274P; and variant 25 (V25), with a single amino acid change, D75A. For V24 a two log-fold reduction in activity occurs in under 10 min at 50°C. For V25, a two log-fold reduction occurs at 60°C, a temperature that reduces the activity of the wild type enzyme by about 30%. The V24 variant fully inactivates enzymes commonly used in molecular biology research and in molecular diagnostics, and is stabilized against autolysis with propylene glycol concentrations of 10% or greater. The subtilisin variants are produced by a strain of Bacillus subtilis that lacks expression of its native secreted proteases, and the variants can be isolated from the supernatants using nickel affinity chromatography.


Subject(s)
Enzymes/drug effects , Recombinant Proteins/metabolism , Subtilisin/pharmacology , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Enzyme Activation , Recombinant Proteins/genetics , Subtilisin/genetics , Subtilisin/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL