Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Publication year range
1.
Nature ; 618(7967): 981-985, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225998

ABSTRACT

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Subject(s)
Carbon Sequestration , Carbon , Ecosystem , Soil Microbiology , Soil , Carbon/analysis , Carbon/metabolism , Climate Change , Plants , Soil/chemistry , Datasets as Topic , Deep Learning
2.
Proc Natl Acad Sci U S A ; 120(25): e2303335120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307452

ABSTRACT

Soil organic matter (SOM) is comprised of a diverse array of reactive carbon molecules, including hydrophilic and hydrophobic compounds, that impact rates of SOM formation and persistence. Despite clear importance to ecosystem science, little is known about broad-scale controls on SOM diversity and variability in soil. Here, we show that microbial decomposition drives significant variability in the molecular richness and diversity of SOM between soil horizons and across a continental-scale gradient in climate and ecosystem type (arid shrubs, coniferous, deciduous, and mixed forests, grasslands, and tundra sedges). The molecular dissimilarity of SOM was strongly influenced by ecosystem type (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 10% P < 0.001) and soil horizon (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 21%, P < 0.001), as assessed using metabolomic analysis of hydrophilic and hydrophobic metabolites. While the proportion of shared molecular features was significantly higher in the litter layer than subsoil C horizons across ecosystems (12 times and 4 times higher for hydrophilic and hydrophobic compounds, respectively), the proportion of site-specific molecular features nearly doubled from the litter layer to the subsoil horizon, suggesting greater differentiation of compounds after microbial decomposition within each ecosystem. Together, these results suggest that microbial decomposition of plant litter leads to a decrease in SOM α-molecular diversity, yet an increase in ß-molecular diversity across ecosystems. The degree of microbial degradation, determined by the position in the soil profile, exerts a greater control on SOM molecular diversity than environmental factors, such as soil texture, moisture, and ecosystem type.


Subject(s)
Ecosystem , Forests , Tundra , Carbon , Soil
4.
PLoS Biol ; 19(3): e3001130, 2021 03.
Article in English | MEDLINE | ID: mdl-33784293

ABSTRACT

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


Subject(s)
Carbon Cycle/drug effects , Microplastics/analysis , Microplastics/toxicity , Soil/chemistry , Carbon/metabolism , Ecosystem , Soil Microbiology
5.
Environ Sci Technol ; 58(26): 11492-11503, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904357

ABSTRACT

Soil organic carbon (SOC) plays a vital role in global carbon cycling and sequestration, underpinning the need for a comprehensive understanding of its distribution and controls. This study explores the importance of various covariates on SOC spatial distribution at both local (up to 1.25 km) and continental (USA) scales using a deep learning approach. Our findings highlight the significant role of terrain attributes in predicting SOC concentration distribution with terrain, contributing approximately one-third of the overall prediction at the local scale. At the continental scale, climate is only 1.2 times more important than terrain in predicting SOC distribution, whereas at the local scale, the structural pattern of terrain is 14 and 2 times more important than climate and vegetation, respectively. We underscore that terrain attributes, while being integral to the SOC distribution at all scales, are stronger predictors at the local scale with explicit spatial arrangement information. While this observational study does not assess causal mechanisms, our analysis nonetheless presents a nuanced perspective about SOC spatial distribution, which suggests disparate predictors of SOC at local and continental scales. The insights gained from this study have implications for improved SOC mapping, decision support tools, and land management strategies, aiding in the development of effective carbon sequestration initiatives and enhancing climate mitigation efforts.


Subject(s)
Carbon , Climate , Soil , Soil/chemistry , Carbon Cycle , Carbon Sequestration
6.
Acta Neuropathol ; 146(3): 451-475, 2023 09.
Article in English | MEDLINE | ID: mdl-37488208

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/pathology , Neurodegenerative Diseases/pathology , Proteomics , Superoxide Dismutase-1/genetics , Motor Neurons/metabolism
7.
Glob Chang Biol ; 29(3): 566-568, 2023 02.
Article in English | MEDLINE | ID: mdl-36380698

ABSTRACT

We often study climate change impact by isolating various drivers and manipulating them at ideal state, despite that in reality those drivers change independent of each other and may produce unexpected results due to possible complex interacting effects over time. Even though global change experiments that examine multiple interacting global change factors are becoming more common, few have been applied to studies on thermal compensatory response of microbial respiration. We propose future studies on thermal adaptation to include multifactorial experiments.


Subject(s)
Acclimatization , Climate Change , Respiration , Adaptation, Physiological/physiology
8.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36594827

ABSTRACT

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon Sequestration , Charcoal
9.
Cell Mol Life Sci ; 79(2): 82, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35048158

ABSTRACT

Senescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative diseases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve cell-based therapies. Here, we show that the signalling protein WNT3A counteracts the induction of paracrine senescence in cultured human adult mesenchymal stem cells (MSCs). We find that entry into senescence in a small subpopulation of MSCs triggers a secretome that causes a feed-forward signalling cascade that with increasing speed induces healthy cells into senescence. WNT signals interrupt this cascade by repressing cytokines that mediate this induction of senescence. Inhibition of those mediators by interference with NF-κB or interleukin 6 signalling reduced paracrine senescence in absence of WNT3A and promoted the expansion of MSCs. Our work reveals how WNT signals can antagonize senescence and has relevance not only for expansion of adult cells but can also provide new insights into senescence-associated inflammatory and degenerative diseases.


Subject(s)
Mesenchymal Stem Cells/metabolism , Senescence-Associated Secretory Phenotype , Wnt Signaling Pathway , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Middle Aged , Wnt3A Protein/metabolism
10.
J Environ Manage ; 341: 118035, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37209592

ABSTRACT

For millennia, Maya farmers (i.e., milperos) throughout Mesoamerica have managed milpa: sequential agroforests initiated by slashing and burning patches of secondary forest and then cultivating a diverse polyculture of trees and annual crops. To reduce greenhouse gas emissions associated with deforestation, the Mexican government and non-governmental organizations have urged milperos to cease burning. We collaborated with Maya milperos in several communities in the Montes Azules Biosphere Reserve region in Chiapas, Mexico to determine carbon retained as char in traditional milpas, carbon loss associated with burning, and effects of burning on soil quality. We found the carbon retention of char in Maya milpas (24 ± 6.5% of C in vegetation) is 4-1400% higher than other slash-and-burn agroecosystems reported in the literature. Burning resulted in significant carbon loss of 12.6 (±3.6) t C ha-1 yr-1, but this was partially mitigated by char production (3.0 [±0.6] t C ha-1 yr-1) and incomplete combustion of woody biomass. The effects of burning on soil were minimal, with the only significant changes observed being increases in pH, potassium availability, and cation exchange capacity (2, 100, and 7%, respectively). The mean residence times of charred materials were at least double that of uncharred biomass. While there is a risk that shortening fallow periods would undermine the sustainability of Maya swidden agroecology, proper management and secure land tenure can help maintain intensive production without enduring environmental degradation. The char produced in these swiddens and successional management could allow this agroforestry system to be a long-term carbon sink.


Subject(s)
Forests , Soil , Mexico , Trees , Carbon , Agriculture
11.
Nature ; 532(7597): 49-57, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27078564

ABSTRACT

Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight 'state of the art' soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.


Subject(s)
Agriculture/methods , Carbon Sequestration , Greenhouse Effect/prevention & control , Soil/chemistry , Agriculture/economics , Agriculture/trends , Carbon Dioxide/metabolism , Internationality , Methane/metabolism , Nitrous Oxide/metabolism , Research/trends , Uncertainty
12.
Ecol Lett ; 24(2): 208-218, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33169908

ABSTRACT

Soil ecological stoichiometry provides powerful theories to integrate the complex interplay of element cycling and microbial communities into biogeochemical models. One essential assumption is that microbes maintain stable C:N:P (carbon:nitrogen:phosphorus) ratios independent of resource supply, although such homeostatic regulations have rarely been assessed in individual microorganisms. Here, we report an unexpected high flexibility in C:N and C:P values of saprobic fungi along nutrient supply gradients, overall ranging between 7-126 and 20-1488, respectively, questioning microbial homeostasis. Fungal N:P varied comparatively less due to simultaneous reductions in mycelial N and P contents. As a mechanism, internal recycling processes during mycelial growth and an overall reduced N and P uptake appear more relevant than element storage. The relationships among fungal stoichiometry and growth disappeared in more complex media. These findings affect our interpretation of stoichiometric imbalances among microbes and soils and are highly relevant for developing microbial soil organic carbon and nitrogen models.


Subject(s)
Carbon , Soil , Nitrogen/analysis , Phosphorus , Soil Microbiology
13.
Appl Environ Microbiol ; 87(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33514520

ABSTRACT

Soil organic carbon (SOC) plays an important role in regulating global climate change, carbon and nutrient cycling in soils, and soil moisture. Organic matter (OM) additions to soils can affect the rate at which SOC is mineralized by microbes, with potentially important effects on SOC stocks. Understanding how pyrogenic organic matter (PyOM) affects the cycling of native SOC (nSOC) and the soil microbes responsible for these effects is important for fire-affected ecosystems as well as for biochar-amended systems. We used an incubation trial with five different soils from National Ecological Observatory Network sites across the US and 13C-labelled 350°C corn stover PyOM and fresh corn stover OM to trace nSOC-derived CO2 emissions with and without PyOM and OM amendments. We used high-throughput sequencing of rRNA genes to characterize bacterial, archaeal, and fungal communities and their response to PyOM and OM in soils that were previously stored at -80°C. We found that the effects of amendments on nSOC-derived CO2 reflected the unamended soil C status, where relative increases in C mineralization were greatest in low-C soils. OM additions produced much greater effects on nSOC-CO2 emissions than PyOM additions. Furthermore, the magnitude of microbial community composition change mirrored the magnitude of increases in nSOC-CO2, indicating a specific subset of microbes were likely responsible for the observed changes in nSOC mineralization. However, PyOM responders differed across soils and did not necessarily reflect a common "charosphere". Overall, this study suggests that soils that already have low SOC may be particularly vulnerable to short-term increases in SOC loss with OM or PyOM additions.Importance Soil organic matter (SOM) has an important role in global climate change, carbon and nutrient cycling in soils, and soil moisture dynamics. Understanding the processes that affect SOM stocks is important for managing these functions. Recently, understanding how fire-affected organic matter (or "pyrogenic" organic matter (PyOM)) affects existing SOM stocks has become increasingly important, both due to changing fire regimes, and to interest in "biochar" - pyrogenic organic matter that is produced intentionally for carbon management or as an agricultural soil amendment. We found that soils with less SOM were more prone to increased losses with PyOM (and fresh organic matter) additions, and that soil microbial communities changed more in soils that also had greater SOM losses with PyOM additions. This suggests that soils that already have low SOM content may be particularly vulnerable to short-term increases in SOM loss, and that a subset of the soil microbial community is likely responsible for these effects.

14.
New Phytol ; 231(5): 1746-1757, 2021 09.
Article in English | MEDLINE | ID: mdl-34077566

ABSTRACT

Nitrogen (N) is an essential nutrient that limits plant growth in many ecosystems. Here we investigate an overlooked component of the terrestrial N cycle - subsurface ammonia (NH3 ) gas transport and its contribution to plant and mycorrhizal N acquisition. We used controlled mesocosms, soil incubations, stable isotopes, and imaging to investigate edaphic drivers of NH3 gas efflux, track lateral subsurface N transport originating from 15 NH3 gas or 15 N-enriched organic matter, and assess plant and mycorrhizal N assimilation from this gaseous transport pathway. NH3 is released from soil organic matter, travels belowground, and contributes to root and fungal N content. Abiotic soil properties (pH and texture) influence the quantity of NH3 available for subsurface transport. Mutualisms with arbuscular mycorrhizal (AM) fungi can substantially increase plant NH3 -N uptake. The grass Brachypodium distachyon acquired 6-9% of total plant N from organic matter-N that traveled as a gas belowground. Colonization by the AM fungus Rhizophagus irregularis was associated with a two-fold increase in total plant N acquisition from subsurface NH3 gas. NH3 gas transport and uptake pathways may be fundamentally different from those of more commonly studied soil N species and warrant further research.


Subject(s)
Mycorrhizae , Ammonia , Ecosystem , Fungi , Gases , Nitrogen , Plant Roots , Soil
15.
Glob Chang Biol ; 27(23): 6025-6058, 2021 12.
Article in English | MEDLINE | ID: mdl-34636101

ABSTRACT

Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing "bottom-up" sectoral estimates with integrated assessment models (IAMs). We also assess implementation feasibility at the country level. Cost-effective (available up to $100/tCO2 eq) land-based mitigation is 8-13.8 GtCO2 eq yr-1 between 2020 and 2050, with the bottom end of this range representing the IAM median and the upper end representing the sectoral estimate. The cost-effective sectoral estimate is about 40% of available technical potential and is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials, cost-effective estimates represent a more realistic and actionable target for policy. The cost-effective potential is approximately 50% from forests and other ecosystems, 35% from agriculture, and 15% from demand-side measures. The potential varies sixfold across the five regions assessed (0.75-4.8 GtCO2eq yr-1 ) and the top 15 countries account for about 60% of the global potential. Protection of forests and other ecosystems and demand-side measures present particularly high mitigation efficiency, high provision of co-benefits, and relatively lower costs. The feasibility assessment suggests that governance, economic investment, and socio-cultural conditions influence the likelihood that land-based mitigation potentials are realized. A substantial portion of potential (80%) is in developing countries and LDCs, where feasibility barriers are of greatest concern. Assisting countries to overcome barriers may result in significant quantities of near-term, low-cost mitigation while locally achieving important climate adaptation and development benefits. Opportunities among countries vary widely depending on types of land-based measures available, their potential co-benefits and risks, and their feasibility. Enhanced investments and country-specific plans that accommodate this complexity are urgently needed to realize the large global potential from improved land stewardship.


Subject(s)
Climate Change , Ecosystem , Agriculture , Feasibility Studies , Policy
16.
Environ Sci Technol ; 55(21): 14795-14805, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34637286

ABSTRACT

Stabilizing the global climate within safe bounds will require greenhouse gas (GHG) emissions to reach net zero within a few decades. Achieving this is expected to require removal of CO2 from the atmosphere to offset some hard-to-eliminate emissions. There is, therefore, a clear need for GHG accounting protocols that quantify the mitigation impact of CO2 removal practices, such as biochar sequestration, that have the potential to be deployed at scale. Here, we have developed a GHG accounting methodology for biochar application to mineral soils using simple parameterizations and readily accessible activity data that can be applied at a range of scales including farm, supply chain, national, or global. The method is grounded in a comprehensive analysis of current empirical data, making it a robust method that can be used for many applications including national inventories and voluntary and compliance carbon markets, among others. We show that the carbon content of biochar varies with feedstock and production conditions from as low as 7% (gasification of biosolids) to 79% (pyrolysis of wood at above 600 °C). Of this initial carbon, 63-82% will remain unmineralized in soil after 100 years at the global mean annual cropland-temperature of 14.9 °C. With this method, researchers and managers can address the long-term sequestration of C through biochar that is blended with soils through assessments such as GHG inventories and life cycle analyses.


Subject(s)
Greenhouse Gases , Agriculture , Carbon Dioxide/analysis , Charcoal , Greenhouse Gases/analysis , Nitrous Oxide/analysis , Soil
18.
Nature ; 528(7580): 60-8, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26595271

ABSTRACT

The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.


Subject(s)
Humic Substances/analysis , Soil/chemistry , Agriculture , Carbon Cycle , Crops, Agricultural/metabolism , Ecosystem , Water/chemistry
19.
New Phytol ; 227(6): 1610-1614, 2020 09.
Article in English | MEDLINE | ID: mdl-32147825

ABSTRACT

A recent study by Sugiura and coworkers reported the non-symbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology.


Subject(s)
Glomeromycota , Mycorrhizae , Ecosystem , Fungi , Myristates , Myristic Acid , Plant Roots , Symbiosis
20.
Glob Chang Biol ; 25(11): 3578-3590, 2019 11.
Article in English | MEDLINE | ID: mdl-31365780

ABSTRACT

Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about the quantitative importance of microbial necromass as part of persistent organic matter. Addressing this uncertainty has been hampered by the absence of quantitative assessments whether microbial matter makes up the majority of the persistent carbon in soil. Direct quantitation of microbial necromass in soil is very challenging because of an overlapping molecular signature with nonmicrobial organic carbon. Here, we use a comprehensive analysis of existing biomarker amino sugar data published between 1996 and 2018, combined with novel appropriation using an ecological systems approach, elemental carbon-nitrogen stoichiometry, and biomarker scaling, to demonstrate a suit of strategies for quantitating the contribution of microbe-derived carbon to the topsoil organic carbon reservoir in global temperate agricultural, grassland, and forest ecosystems. We show that microbial necromass can make up more than half of soil organic carbon. Hence, we suggest that next-generation field management requires promoting microbial biomass formation and necromass preservation to maintain healthy soils, ecosystems, and climate. Our analyses have important implications for improving current climate and carbon models, and helping develop management practices and policies.


Subject(s)
Carbon , Soil , Biomass , Ecosystem , Nitrogen , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL