Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Plant J ; 110(3): 916-924, 2022 05.
Article in English | MEDLINE | ID: mdl-35165972

ABSTRACT

Protein tracking in living plant cells has become routine with the emergence of reporter genes encoding fluorescent tags. Unfortunately, this imaging strategy is not applicable to glycans because they are not directly encoded by the genome. Indeed, complex glycans result from sequential additions and/or removals of monosaccharides by the glycosyltransferases and glycosidases of the cell's biosynthetic machinery. Currently, the imaging of cell wall polymers mainly relies on the use of antibodies or dyes that exhibit variable specificities. However, as immunolocalization typically requires sample fixation, it does not provide access to the dynamics of living cells. The development of click chemistry in plant cell wall biology offers an alternative for live-cell labeling. It consists of the incorporation of a carbohydrate containing a bio-orthogonal chemical reporter into the target polysaccharide using the endogenous biosynthetic machinery of the cell. Once synthesized and deposited in the cell wall, the polysaccharide containing the analog monosaccharide is covalently coupled to an exogenous fluorescent probe. Here, we developed a metabolic click labeling approach which allows the imaging of cell wall polysaccharides in living and elongating cells without affecting cell viability. The protocol was established using the pollen tube, a useful model to follow cell wall dynamics due to its fast and tip-polarized growth, but was also successfully tested on Arabidopsis root cells and root hairs. This method offers the possibility of imaging metabolically incorporated sugars of viable and elongating cells, allowing the study of the long-term dynamics of labeled extracellular polysaccharides.


Subject(s)
Arabidopsis , Pectins , Arabidopsis/metabolism , Cell Wall/metabolism , Click Chemistry/methods , Pectins/metabolism , Polysaccharides/metabolism
2.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36768855

ABSTRACT

Glycan metabolic engineering is a powerful tool for studying the glycosylation in living plant cells. The use of modified monosaccharides such as deoxy or fluorine-containing glycosides has been reported as a powerful pharmacological approach for studying the carbohydrate metabolism. 1,3,4-tri-O-acetyl-2-fluoro-l-fucose (2F-Fuc) is a potent inhibitor of the plant cell elongation. After feeding plant seedlings with 2F-Fuc, this monosaccharide derivative is deacetylated and converted by the endogenous metabolic machinery into the corresponding nucleotide-sugar, which then efficiently inhibits Golgi-localized fucosyltransferases. Among plant cell wall polymers, defects in the fucosylation of the pectic rhamnogalacturonan-II cause a decrease in RG-II dimerization, which in turn induce the arrest of the cell elongation. In order to perform the inhibition of the cell elongation process in a spatio-temporal manner, we synthesized a caged 3,4-di-O-acetyl-1-hydroxy-2-fluoro-l-fucose (1-OH-2F-Fuc) derivative carrying a photolabile ortho-nitrobenzyl alcohol function at the anomeric position: 3,4-di-O-acetyl-1-ortho-nitrobenzyl-2-fluoro-l-fucose (2F-Fuc-NB). The photorelease of the trapped 1-OH-2F-Fuc was performed under a 365 nm LED illumination. We demonstrated that the in planta elimination by photoexcitation of the photolabile group releases free 2F-Fuc in plant cells, which in turn inhibits in a dose-dependent manner and, reversibly, the root cell elongation.


Subject(s)
Fucose , Fucosyltransferases , Fucose/metabolism , Delayed-Action Preparations , Fucosyltransferases/metabolism , Glycosylation , Monosaccharides
3.
Plant J ; 103(2): 617-633, 2020 07.
Article in English | MEDLINE | ID: mdl-32215973

ABSTRACT

Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine-tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark-grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo-PG that preferentially releases non-methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non-methylesterified pectin epitopes are detected. Those leaks could either be repaired by new ß-glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.


Subject(s)
Arabidopsis Proteins/physiology , Pollen Tube/physiology , Polygalacturonase/physiology , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/pharmacology , Plant Roots/metabolism , Plants, Genetically Modified , Pollen Tube/drug effects , Polygalacturonase/genetics , Polygalacturonase/pharmacology , Saccharomycetales
4.
Plant Cell ; 29(1): 129-143, 2017 01.
Article in English | MEDLINE | ID: mdl-28062750

ABSTRACT

UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Golgi Apparatus/metabolism , Nucleotide Transport Proteins/metabolism , Polysaccharides/metabolism , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Immunoblotting , Microscopy, Confocal , Mutation , Nucleotide Transport Proteins/genetics , Pectins/metabolism , Plants, Genetically Modified , Seeds/genetics , Uridine Diphosphate Sugars/metabolism
5.
BMC Plant Biol ; 19(1): 152, 2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31010418

ABSTRACT

BACKGROUND: During sexual reproduction, pollen grains land on the stigma, rehydrate and produce pollen tubes that grow through the female transmitting-tract tissue allowing the delivery of the two sperm cells to the ovule and the production of healthy seeds. Because pollen tubes are single cells that expand by tip-polarized growth, they represent a good model to study the growth dynamics, cell wall deposition and intracellular machineries. Aiming to understand this complex machinery, we used a low throughput chemical screen approach in order to isolate new tip-growth disruptors. The effect of a chemical inhibitor of monogalactosyldiacylglycerol synthases, galvestine-1, was also investigated. The present work further characterizes their effects on the tip-growth and intracellular dynamics of pollen tubes. RESULTS: Two small compounds among 258 were isolated based on their abilities to perturb pollen tube growth. They were found to disrupt in vitro pollen tube growth of tobacco, tomato and Arabidopsis thaliana. We show that these 3 compounds induced abnormal phenotypes (bulging and/or enlarged pollen tubes) and reduced pollen tube length in a dose dependent manner. Pollen germination was significantly reduced after treatment with the two compounds isolated from the screen. They also affected cell wall material deposition in pollen tubes. The compounds decreased anion superoxide accumulation, disorganized actin filaments and RIC4 dynamics suggesting that they may affect vesicular trafficking at the pollen tube tip. CONCLUSION: These molecules may alter directly or indirectly ROP1 activity, a key regulator of pollen tube growth and vesicular trafficking and therefore represent good tools to further study cellular dynamics during polarized-cell growth.


Subject(s)
Arabidopsis/growth & development , Pollen Tube/growth & development , Small Molecule Libraries/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Arabidopsis/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Germination/drug effects , Molecular Conformation , Pollen Tube/drug effects , Small Molecule Libraries/chemistry , Superoxides/metabolism
6.
Plant Physiol ; 173(2): 1075-1093, 2017 02.
Article in English | MEDLINE | ID: mdl-28034952

ABSTRACT

The fine-tuning of the degree of methylesterification of cell wall pectin is a key to regulating cell elongation and ultimately the shape of the plant body. Pectin methylesterification is spatiotemporally controlled by pectin methylesterases (PMEs; 66 members in Arabidopsis [Arabidopsis thaliana]). The comparably large number of proteinaceous pectin methylesterase inhibitors (PMEIs; 76 members in Arabidopsis) questions the specificity of the PME-PMEI interaction and the functional role of such abundance. To understand the difference, or redundancy, between PMEIs, we used molecular dynamics (MD) simulations to predict the behavior of two PMEIs that are coexpressed and have distinct effects on plant development: AtPMEI4 and AtPMEI9. Simulations revealed the structural determinants of the pH dependence for the interaction of these inhibitors with AtPME3, a major PME expressed in roots. Key residues that are likely to play a role in the pH dependence were identified. The predictions obtained from MD simulations were confirmed in vitro, showing that AtPMEI9 is a stronger, less pH-independent inhibitor compared with AtPMEI4. Using pollen tubes as a developmental model, we showed that these biochemical differences have a biological significance. Application of purified proteins at pH ranges in which PMEI inhibition differed between AtPMEI4 and AtPMEI9 had distinct consequences on pollen tube elongation. Therefore, MD simulations have proven to be a powerful tool to predict functional diversity between PMEIs, allowing the discovery of a strategy that may be used by PMEIs to inhibit PMEs in different microenvironmental conditions and paving the way to identify the specific role of PMEI diversity in muro.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/metabolism , Computational Biology/methods , Enzyme Inhibitors/metabolism , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Plant , Germination , Hydrogen Bonding , Hydrogen-Ion Concentration , Hypocotyl/growth & development , Hypocotyl/metabolism , Molecular Dynamics Simulation , Plant Roots/growth & development , Plant Roots/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Recombinant Proteins/metabolism
7.
Ann Bot ; 122(5): 849-860, 2018 11 03.
Article in English | MEDLINE | ID: mdl-29579139

ABSTRACT

Background and Aims: Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Methods: Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Key Results: Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Conclusions: Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.


Subject(s)
Arabidopsis/physiology , Calcium/metabolism , Ethylenes/metabolism , Nicotiana/physiology , Plant Growth Regulators/metabolism , Aequorin/metabolism , Apoproteins/metabolism , Arabidopsis/drug effects , Cell Membrane/physiology , Cells, Cultured , Cytosol/metabolism , Methanol/administration & dosage , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Recombinant Proteins/metabolism , Seedlings/drug effects , Seedlings/physiology , Nicotiana/drug effects
8.
Plant J ; 85(3): 437-47, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26676799

ABSTRACT

In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth.


Subject(s)
Arabidopsis/ultrastructure , Cell Wall/ultrastructure , Nucleotidyltransferases/antagonists & inhibitors , Pectins/chemistry , Sugar Acids/chemistry , Azides/chemistry , Cells, Cultured , Plant Roots/ultrastructure , Seedlings/ultrastructure , Staining and Labeling , Nicotiana/ultrastructure
9.
Planta ; 246(6): 1109-1124, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28815300

ABSTRACT

MAIN CONCLUSION: A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth. The identified compound is holaphyllamine (HPA) whose chemical structure is similar to steroid pregnanes of mammals. Our data show that HPA, which is not constitutively present in A. thaliana, is able to trigger the formation of reactive oxygen species, deposition of callose and expression of several pathogenesis-related genes of the salicylic and jasmonic acid pathways. In addition, the results show that pre-treatment of A. thaliana seedlings with HPA before infection with the pathogenic bacterium Pseudomonas syringae pv tomato DC3000 results in a significant reduction of symptoms (i.e., reduction of bacterial colonies). Using A. thaliana mutants, we have found that the activation of defense responses by HPA does not depend on BRI1/BAK1 receptor kinases. Finally, a structure/function study reveals that the minimal structure required for activity is a 5-pregnen-20-one steroid with an equatorial nucleophilic group in C-3. Together, these findings demonstrate that HPA can activate defense responses that lead to improved resistance against bacterial infection in A. thaliana.


Subject(s)
Arabidopsis/drug effects , Disease Resistance , Gene Expression Regulation, Plant/drug effects , Phytosterols/pharmacology , Plant Diseases/immunology , Pseudomonas syringae/physiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cells, Cultured , Cyclopentanes/metabolism , Glucans/metabolism , Mutation , Oxylipins/metabolism , Phytosterols/chemistry , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Reactive Oxygen Species/metabolism , Respiratory Burst/drug effects , Salicylic Acid/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Small Molecule Libraries , Nicotiana/drug effects
10.
J Exp Bot ; 68(5): 1083-1095, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28375469

ABSTRACT

AtPME3 (At3g14310) is a ubiquitous cell wall pectin methylesterase. Atpme3-1 loss-of-function mutants exhibited distinct phenotypes from the wild type (WT), and were characterized by earlier germination and reduction of root hair production. These phenotypical traits were correlated with the accumulation of a 21.5-kDa protein in the different organs of 4-day-old Atpme3-1 seedlings grown in the dark, as well as in 6-week-old mutant plants. Microarray analysis showed significant down-regulation of the genes encoding several pectin-degrading enzymes and enzymes involved in lipid and protein metabolism in the hypocotyl of 4-day-old dark grown mutant seedlings. Accordingly, there was a decrease in proteolytic activity of the mutant as compared with the WT. Among the genes specifying seed storage proteins, two encoding CRUCIFERINS were up-regulated. Additional analysis by RT-qPCR showed an overexpression of four CRUCIFERIN genes in the mutant Atpme3-1, in which precursors of the α- and ß-subunits of CRUCIFERIN accumulated. Together, these results provide evidence for a link between AtPME3, present in the cell wall, and CRUCIFERIN metabolism that occurs in vacuoles.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Carboxylic Ester Hydrolases/physiology , Seed Storage Proteins/metabolism , Seedlings/growth & development , Arabidopsis/enzymology , Arabidopsis/physiology , Cell Wall/enzymology , Genes, Plant/physiology , Germination , Oligonucleotide Array Sequence Analysis , Seedlings/metabolism
11.
Plant J ; 84(6): 1137-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26565655

ABSTRACT

Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 µm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.


Subject(s)
Arabidopsis/metabolism , Cell Wall/metabolism , Fucose/analogs & derivatives , Plant Roots/cytology , Arabidopsis/cytology , Arabidopsis/genetics , Cell Shape/drug effects , Fucose/pharmacology , Mutation , Plant Roots/growth & development , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism
12.
Plant Physiol ; 167(2): 367-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25524442

ABSTRACT

Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Carboxylic Ester Hydrolases/metabolism , Germination , Pollen/enzymology , Pollen/growth & development , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium/pharmacology , Carboxylic Ester Hydrolases/genetics , Culture Media/pharmacology , Esterification/drug effects , Gene Expression Regulation, Plant/drug effects , Homozygote , Mutation/genetics , Organ Specificity/drug effects , Organ Specificity/genetics , Pectins/metabolism , Phenotype , Pollen/genetics , Pollen Tube/drug effects , Pollen Tube/metabolism , Reverse Transcriptase Polymerase Chain Reaction
13.
J Exp Bot ; 67(15): 4767-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27382114

ABSTRACT

GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.


Subject(s)
Ascorbic Acid/biosynthesis , Carbohydrate Epimerases/metabolism , Cell Wall/metabolism , Solanum lycopersicum/enzymology , Carbohydrate Epimerases/physiology , Cell Wall/physiology , Gene Expression Regulation, Plant/physiology , Germination/physiology , Isoenzymes/metabolism , Isoenzymes/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Pollen/metabolism
14.
Ann Bot ; 115(1): 55-66, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25434027

ABSTRACT

BACKGROUND AND AIMS: In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS: XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS: Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS: The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.


Subject(s)
Glucans/metabolism , Nicotiana/metabolism , Solanum lycopersicum/metabolism , Solanum/metabolism , Xylans/metabolism , Arabinose/metabolism , Fucosyltransferases/metabolism , Gas Chromatography-Mass Spectrometry , Immunohistochemistry , Solanum lycopersicum/enzymology , Oligosaccharides/chemistry , Plant Proteins/metabolism , Pollen Tube/metabolism , Solanum/enzymology , Nicotiana/enzymology
15.
Ann Bot ; 114(6): 1177-88, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24825296

ABSTRACT

BACKGROUND AND AIMS: Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. METHODS: Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene ß-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. KEY RESULTS: Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. CONCLUSIONS: This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Gene Expression Regulation, Plant , Pectins/metabolism , Pollen Tube/enzymology , Sialyltransferases/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Genes, Reporter , Mutation , Organ Specificity , Phenotype , Pollen/enzymology , Pollen/genetics , Pollen/growth & development , Pollen Tube/genetics , Pollen Tube/growth & development , Polymers/metabolism , Sialyltransferases/metabolism , Sugar Acids/chemistry , Sugar Acids/metabolism
16.
Plant Cell Environ ; 36(5): 1056-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23176574

ABSTRACT

Date palm (Phoenix dactylifera) is an important crop providing a valuable nutrition source for people in many countries including the Middle East and North Africa. In recent years, the amount of rain in North Africa and especially in the Tunisian palm grove areas has dropped significantly. We investigated the growth and cell wall remodelling of fruits harvested at three key development stages from trees grown with or without water supply. During development, cell wall solubilization and remodelling was characterized by a decrease of the degree of methylesterification of pectin, an important loss of galactose content and a reduction of the branching of xylan by arabinose in irrigated condition. Water deficit had a profound effect on fruit size, pulp content, cell wall composition and remodelling. Loss of galactose content was not as important, arabinose content was significantly higher in the pectin-enriched extracts from non-irrigated condition, and the levels of methylesterification of pectin and O-acetylation of xyloglucan were lower than in irrigated condition. The lower levels of hydrophobic groups (methylester and O-acetyl) and the less intensive degradation of the hydrophilic galactan, arabinan and arabinogalactan in the cell wall may be implicated in maintaining the hydration status of the cells under water deficit.


Subject(s)
Arecaceae/metabolism , Cell Wall/metabolism , Fruit/growth & development , Water/metabolism , Acetylation , Arecaceae/growth & development , Dehydration , Esterification , Fruit/metabolism , Galactans/metabolism , Galactose/metabolism , Glucans/metabolism , Hydrophobic and Hydrophilic Interactions , Pectins/metabolism , Polysaccharides/metabolism , Solubility , Xylans/metabolism
17.
Curr Biol ; 32(20): 4465-4472.e6, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36027911

ABSTRACT

Sexual selection is the basis of some of the most striking phenotypic variation in nature.1,2 In animals, sexual selection in males can act on traits that improve access to mates prior to copulation,3-8 but also on sperm traits filtered by sperm competition,9-14 or female choice expressed simply by the morphology and physiology of genital tracts.14-16 Although long overlooked as a mode of selection on plant traits, sexual selection should act on land plants too because they are anisogamous: males produce more, and smaller, gametes than females.17-19 Numerical asymmetry in gamete production is thought to play a central role in selection on traits that affect pollen transfer to mates,20,21 but very little is known about how pollen competition or cryptic female choice might affect the evolution of traits expressed after pollination.22,23 Here, we report the divergence of pollen and pistil traits of the dioecious wind-pollinated annual herb Mercurialis annua during evolution over three generations between populations at low versus high plant density, corresponding to low versus higher levels of polyandry;24 we expected selection under higher polyandry to strengthen competition among pollen donors for fertilizing ovules. We found that populations at high density evolved faster-growing pollen tubes (an equivalent of greater sperm velocity), greater expression of pollen proteins involved in pollen growth, and larger stigmas (a trait likely enhancing the number of pollen donors and thus competition for ovules). Our results identify the post-pollination phase of plant mating as an important arena for the action of sexual selection.


Subject(s)
Pollination , Sexual Selection , Male , Animals , Female , Pollination/physiology , Seeds , Pollen/physiology , Reproduction , Flowers/physiology , Plants
18.
Plant Physiol ; 153(4): 1563-76, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20547702

ABSTRACT

During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.


Subject(s)
Arabidopsis/growth & development , Cell Wall/chemistry , Pollen Tube/growth & development , Microscopy, Electron , Mucoproteins/chemistry , Pectins/chemistry , Plant Proteins/chemistry , Pollen Tube/ultrastructure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Trends Ecol Evol ; 36(6): 556-567, 2021 06.
Article in English | MEDLINE | ID: mdl-33775429

ABSTRACT

Sexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models. We review aspects of the molecular and cellular biology of pollen-pistil interactions on which sexual selection could act and point to research that is needed to investigate them.


Subject(s)
Pollination , Sexual Selection , Female , Flowers/genetics , Male , Plants/genetics , Pollen/genetics
20.
Front Plant Sci ; 12: 552515, 2021.
Article in English | MEDLINE | ID: mdl-34691089

ABSTRACT

To date, it is widely accepted by the scientific community that many agricultural regions will experience more extreme temperature fluctuations. These stresses will undoubtedly impact crop production, particularly fruit and seed yields. In fact, pollination is considered as one of the most temperature-sensitive phases of plant development and until now, except for the time-consuming and costly processes of genetic breeding, there is no immediate alternative to address this issue. In this work, we used a multidisciplinary approach using physiological, biochemical, and molecular techniques for studying the effects of two carbohydrate-based natural activators on in vitro tomato pollen germination and pollen tube growth cultured in vitro under cold conditions. Under mild and strong cold temperatures, these two carbohydrate-based compounds significantly enhanced pollen germination and pollen tube growth. The two biostimulants did not induce significant changes in the classical molecular markers implicated in pollen tube growth. Neither the number of callose plugs nor the CALLOSE SYNTHASE genes expression were significantly different between the control and the biostimulated pollen tubes when pollens were cultivated under cold conditions. PECTIN METHYLESTERASE (PME) activities were also similar but a basic PME isoform was not produced or inactive in pollen grown at 8°C. Nevertheless, NADPH oxidase (RBOH) gene expression was correlated with a higher number of viable pollen tubes in biostimulated pollen tubes compared to the control. Our results showed that the two carbohydrate-based products were able to reduce in vitro the effect of cold temperatures on tomato pollen tube growth and at least for one of them to modulate reactive oxygen species production.

SELECTION OF CITATIONS
SEARCH DETAIL