Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Opt Lett ; 48(11): 3079-3082, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262285

ABSTRACT

Swept-source optical coherence tomography (SS-OCT) demonstrates superior performance in comparison to spectral domain OCT with regard to depth ranging. The main driver of cost for SS-OCT systems is, however, the price of the source. Here we show a low-cost alternative swept source that uses a thermally tuned vertical-cavity surface-emitting laser (VCSEL) at 850 nm. Its center wavelength can be tuned by adjusting the operating temperature through modulation of the injection current. At 2 kHz sweep rate, the depth range of the system was 5 cm, with a sensitivity roll-off of under -3 dB across this range. The system achieved a sensitivity of 97 dB with a sample beam power of 0.3 mW and an axial resolution of 50 µm in air. To demonstrate the system performance in vivo, an eye of a healthy volunteer was measured, and full-eye scans were acquired at 25 and 50 kHz from the cornea to the retina. Based on our results, we believe that this technology can be used as a cost-effective alternative OCT for point-of-care diagnostics.

2.
Opt Express ; 29(22): 35078-35118, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34808951

ABSTRACT

This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.


Subject(s)
Holography/methods , Imaging, Three-Dimensional/methods , Algorithms , Animals , High-Throughput Screening Assays , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Tomography , Virtual Reality
3.
Appl Opt ; 60(26): 7955-7962, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34613055

ABSTRACT

A novel fast proximal scanning method, to the best of our knowledge, termed fiber-core-targeted scanning (FCTS), is proposed for illuminating individual fiber cores sequentially to remove the pixelation effect in fiber bundle (FB) imaging. FCTS is based on a galvanometer scanning system. Through a dynamic control of the scan trajectory and speed using the prior knowledge of fiber core positions, FCTS experimentally verifies a precise sequential delivery of laser pulses into fiber cores at a maximal speed of 45,000 cores per second. By applying FCTS on a FB-based photoacoustic forward-imaging probe, the results demonstrate that FCTS eliminates the pixelation effect and improves the imaging quality.

4.
Analyst ; 145(4): 1445-1456, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31867582

ABSTRACT

Non-muscle-invasive bladder cancer affects millions of people worldwide, resulting in significant discomfort to the patient and potential death. Today, cystoscopy is the gold standard for bladder cancer assessment, using white light endoscopy to detect tumor suspected lesion areas, followed by resection of these areas and subsequent histopathological evaluation. Not only does the pathological examination take days, but due to the invasive nature, the performed biopsy can result in significant harm to the patient. Nowadays, optical modalities, such as optical coherence tomography (OCT) and Raman spectroscopy (RS), have proven to detect cancer in real time and can provide more detailed clinical information of a lesion, e.g. its penetration depth (stage) and the differentiation of the cells (grade). In this paper, we present an ex vivo study performed with a combined piezoelectric tube-based OCT-probe and fiber optic RS-probe imaging system that allows large field-of-view imaging of bladder biopsies, using both modalities and co-registered visualization, detection and grading of cancerous bladder lesions. In the present study, 119 examined biopsies were characterized, showing that fiber-optic based OCT provides a sensitivity of 78% and a specificity of 69% for the detection of non-muscle-invasive bladder cancer, while RS, on the other hand, provides a sensitivity of 81% and a specificity of 61% for the grading of low- and high-grade tissues. Moreover, the study shows that a piezoelectric tube-based OCT probe can have significant endurance, suitable for future long-lasting in vivo applications. These results also indicate that combined OCT and RS fiber probe-based characterization offers an exciting possibility for label-free and morpho-chemical optical biopsies for bladder cancer diagnostics.


Subject(s)
Optical Fibers , Spectrum Analysis, Raman , Tomography, Optical Coherence/instrumentation , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Cell Line, Tumor , Collagen/metabolism , Humans , Neoplasm Grading , Neoplasm Invasiveness
5.
Opt Lett ; 44(4): 967-970, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768032

ABSTRACT

We demonstrate a synthetic subaperture-based angle-independent Doppler flow calculation, using a line field spectral domain optical coherence tomography system. The high speed of the system features a high phase stability over the volume, which is necessary to apply synthetic subapertures in the aperture plane. Thus, the flow component for each subaperture can be reconstructed in postprocessing. Capillary phantom and in vivo retinal imaging experiments were performed to validate and demonstrate angle-independent Doppler flow calculation.


Subject(s)
Regional Blood Flow , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiology , Tomography, Optical Coherence , Humans , Imaging, Three-Dimensional , Phantoms, Imaging
6.
Molecules ; 24(19)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590270

ABSTRACT

Pituitary adenomas are neoplasia of the anterior pituitary gland and can be subdivided into hormone-producing tumors (lactotroph, corticotroph, gonadotroph, somatotroph, thyreotroph or plurihormonal) and hormone-inactive tumors (silent or null cell adenomas) based on their hormonal status. We therefore developed a line scan Raman microspectroscopy (LSRM) system to detect, discriminate and hyperspectrally visualize pituitary gland from pituitary adenomas based on molecular differences. By applying principal component analysis followed by a k-nearest neighbor algorithm, specific hormone states were identified and a clear discrimination between pituitary gland and various adenoma subtypes was achieved. The classifier yielded an accuracy of 95% for gland tissue and 84-99% for adenoma subtypes. With an overall accuracy of 92%, our LSRM system has proven its potential to differentiate pituitary gland from pituitary adenomas. LSRM images based on the presence of specific Raman bands were created, and such images provided additional insight into the spatial distribution of particular molecular compounds. Pathological states could be molecularly differentiated and characterized with texture analysis evaluating Grey Level Cooccurrence Matrices for each LSRM image, as well as correlation coefficients between LSRM images.


Subject(s)
Pituitary Gland/pathology , Pituitary Neoplasms/diagnostic imaging , Spectrum Analysis, Raman/instrumentation , Algorithms , Humans , Image Interpretation, Computer-Assisted , Pituitary Gland/diagnostic imaging , Pituitary Neoplasms/pathology , Principal Component Analysis
7.
Opt Express ; 26(26): 33772-33782, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30650810

ABSTRACT

This paper presents an experimental investigation of the possibility of transverse resolution improvement combined with effective numerically focused 3D imaging in full-field swept-source optical coherence microscopy (OCM) by using structured illumination and specific numerical post-processing. The possibility of transverse resolution improvement of the OCM coherence signal combined with the possibility of numerical focusing is demonstrated by imaging a resolution test target in the optical focus and defocus regions. The possibility of numerically focused 3D imaging with high transverse resolution is further demonstrated by imaging a 3D phantom and a biological sample. The results obtained demonstrate the feasibility and prospects of the combination of structured illumination and numerical focusing in Fourier domain OCM.

8.
Opt Express ; 22(13): 16061-78, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977860

ABSTRACT

In this paper a theoretical model of the full field swept source (FF SS) OCT signal is presented based on the angular spectrum wave propagation approach which accounts for the defocus error with imaging depth. It is shown that using the same theoretical model of the signal, numerical defocus correction methods based on a simple forward model (FM) and inverse scattering (IS), the latter being similar to interferometric synthetic aperture microscopy (ISAM), can be derived. Both FM and IS are compared quantitatively with sub-aperture based digital adaptive optics (DAO). FM has the least numerical complexity, and is the fastest in terms of computational speed among the three. SNR improvement of more than 10 dB is shown for all the three methods over a sample depth of 1.5 mm. For a sample with non-uniform refractive index with depth, FM and IS both improved the depth of focus (DOF) by a factor of 7x for an imaging NA of 0.1. DAO performs the best in case of non-uniform refractive index with respect to DOF improvement by 11x.

9.
Opt Lett ; 39(18): 5333-6, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-26466264

ABSTRACT

We present a novel medical imaging modality based on optical coherence tomography (OCT) that enables in vivo 3D tomography at acquisition rates up to 1 MHz. Line field parallel swept source interferometric imaging (LPSI) combines line-field swept source OCT with modulation of the interferometric signal in spatial direction for full range imaging. This method enables high speed imaging with cost-effective and commercially available technology. We explain the realization of the LPSI setup, acquisition, and postprocessing and finally demonstrate 3D in vivo imaging of human nail fold. To the best of our knowledge, sensitivity and depth penetration are competitive with respective point scanning OCT methods at a comparable wavelength. Measured maximum sensitivity is 98.5 dB for 100 kHz and 90 dB for 1 MHz. Together with the significantly relaxed technological requirements regarding detection and swept source technology, LPSI might be a promising concept for future diagnostic OCT imaging.

10.
Nat Commun ; 15(1): 2391, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493195

ABSTRACT

Organoid and spheroid technology provide valuable insights into developmental biology and oncology. Optical coherence tomography (OCT) is a label-free technique that has emerged as an excellent tool for monitoring the structure and function of these samples. However, mature organoids are often too opaque for OCT. Access to multi-angle views is highly desirable to overcome this limitation, preferably with non-contact sample handling. To fulfil these requirements, we present an ultrasound-induced reorientation method for multi-angle-OCT, which employs a 3D-printed acoustic trap inserted into an OCT imaging system, to levitate and reorient zebrafish larvae and tumor spheroids in a controlled and reproducible manner. A model-based algorithm was developed for the physically consistent fusion of multi-angle data from a priori unknown angles. We demonstrate enhanced penetration depth in the joint 3D-recovery of reflectivity, attenuation, refractive index, and position registration for zebrafish larvae, creating an enabling tool for future applications in volumetric imaging.


Subject(s)
Neoplasms , Tomography, Optical Coherence , Animals , Tomography, Optical Coherence/methods , Zebrafish , Ultrasonography
11.
Invest Ophthalmol Vis Sci ; 65(3): 20, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38470325

ABSTRACT

Purpose: The purpose of this study was to investigate rod photopigment bleaching-driven intrinsic optical signals (IOS) in the human outer retina and its measurement repeatability based on a commercial optical coherence tomography (OCT) platform. Methods: The optical path length of the rod photoreceptor subretinal space (SRS), that is, the distance between signal bands of rod outer segment tips and retinal pigment epithelium, was measured in 15 healthy subjects in ambient light and during a long-duration bleaching white-light exposure. Results: On 2 identical study days (day 1 and day 2 [D1 and D2]), light stimulation resulted in a significant decrease in rod SRS by 21.3 ± 7.6% and 19.8 ± 8.5% (both P < 0.001), respectively. The test-retest reliability of the SRS maximum change of an individual subject was moderate for single measures (intraclass correlation coefficient [ICC] = 0.730, 95% confidence interval [CI] = 0.376, 0.900, P < 0.001) and good for average measures (ICC = 0.844, 95% CI = 0.546, 0.947, P < 0.001). The mean area under the stimulus response curve with values of 14.8 ± 9.4 and 15.5 ± 7.5 µm × minutes (P = 0.782) showed excellent agreement between the stimulus response on D1 and D2. Intermittent dark adaptation of the retina led to an initial increase of the SRS by 6.1% (P = 0.018) and thereafter showed a decrease toward baseline, despite continued dark adaptation. Conclusions: The data indicate the potential of commercial OCT in measuring slow IOS in the outer retina suggesting that the rod SRS could serve as a biomarker for photoreceptor function. The presented approach could provide an easily implementable clinical tool for the early detection of diseases affecting photoreceptor health.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Reproducibility of Results , Retina/diagnostic imaging , Dark Adaptation , Rod Cell Outer Segment
12.
Transl Vis Sci Technol ; 13(4): 18, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607633

ABSTRACT

Purpose: To investigate the visualization capabilities of high-speed swept-source optical coherence tomography (SS-OCT) in cataract surgery. Methods: Cataract surgery was simulated in wet labs with ex vivo porcine eyes. Each phase of the surgery was visualized with a novel surgical microscope-integrated SS-OCT with a variable imaging speed of over 1 million A-scans per second. It was designed to provide four-dimensional (4D) live-volumetric videos, live B-scans, and volume capture scans. Results: Four-dimensional videos, B-scans, and volume capture scans of corneal incision, ophthalmic viscosurgical device injection, capsulorrhexis, phacoemulsification, intraocular lens (IOL) injection, and position of unfolded IOL in the capsular bag were recorded. The flexibility of the SS-OCT system allowed us to tailor the scanning parameters to meet the specific demands of dynamic surgical steps and static pauses. The entire length of the eye was recorded in a single scan, and unfolding of the IOL was visualized dynamically. Conclusions: The presented novel visualization method for fast ophthalmic surgical microscope-integrated intraoperative OCT imaging in cataract surgery allowed the visualization of all major steps of the procedure by achieving large imaging depths covering the entire eye and high acquisition speeds enabling live volumetric 4D-OCT imaging. This promising technology may become an integral part of routine and advanced robotic-assisted cataract surgery in the future. Translational Relevance: We demonstrate the visualization capabilities of a cutting edge swept-source OCT system integrated into an ophthalmic surgical microscope during cataract surgery.


Subject(s)
Cataract , Lenses, Intraocular , Ophthalmology , Swine , Animals , Tomography, Optical Coherence , Eye
13.
Acta Ophthalmol ; 102(5): e687-e695, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38126128

ABSTRACT

PURPOSE: To compare detection rates of microaneurysms (MAs) on high-speed megahertz optical coherence tomography angiography (MHz-OCTA), fluorescein angiography (FA) and colour fundus photography (CF) in patients with diabetic retinopathy (DR). METHODS: For this exploratory cross-sectional study, MHz-OCTA data were acquired with a swept-source OCT prototype (A-scan rate: 1.7 MHz), and FA and CF imaging was performed using Optos® California. MA count was manually evaluated on en face MHz-OCTA/FA/CF images within an extended ETDRS grid. Detectability of MAs visible on FA images was evaluated on corresponding MHz-OCTA and CF images. MA distribution and leakage were correlated with detectability on OCTA and CF imaging. RESULTS: 47 eyes with severe DR (n = 12) and proliferative DR (n = 35) were included. MHz-OCTA and CF imaging detected on average 56% and 36% of MAs, respectively. MHz-OCTA detection rate was significantly higher than CF (p < 0.01). The combination of MHz-OCTA and CF leads to an increased detection rate of 70%. There was no statistically significant association between leakage and MA detectability on OCTA (p = 0.13). For CF, the odds of detecting leaking MAs were significantly lower than non-leaking MAs (p = 0.012). Using MHz-OCTA, detection of MAs outside the ETDRS grid was less likely than MAs located within the ETDRS grid (outer ring, p < 0.01; inner ring, p = 0.028). No statistically significant difference between rings was observed for CF measurements. CONCLUSIONS: More MAs were detected on MHz-OCTA than on CF imaging. Detection rate was lower for MAs located outside the macular region with MHz-OCTA and for leaking MAs with CF imaging. Combining both non-invasive modalities can improve MA detection.


Subject(s)
Diabetic Retinopathy , Fluorescein Angiography , Fundus Oculi , Microaneurysm , Retinal Vessels , Tomography, Optical Coherence , Humans , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/diagnostic imaging , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Microaneurysm/diagnosis , Microaneurysm/etiology , Fluorescein Angiography/methods , Male , Female , Middle Aged , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Aged
14.
Opt Express ; 21(9): 10850-66, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23669942

ABSTRACT

This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.


Subject(s)
Image Enhancement/instrumentation , Interferometry/instrumentation , Lenses , Signal Processing, Computer-Assisted/instrumentation , Tomography, Optical Coherence/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feedback , Statistics as Topic
15.
Opt Lett ; 38(21): 4433-6, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24177112

ABSTRACT

Bidirectional Doppler optical coherence tomography is a stable and accurate method to extract the absolute velocity of vessels close to perpendicular to the optical axis by illuminating the sample under two different angles. However it requires knowledge of the vessel angle in the en face plane. In this Letter, we demonstrate that a direct calculation of the flow out of bidirectional Doppler cross sections perpendicular to the illumination plane is independent of that angle and of the Doppler angle, thereby improving the accuracy and flexibility of that technique. We validate our approach with an in vitro experiment and in vivo measurements of a human retinal vessel and discuss the practical limitations of this approach. The method yields accurate flow values for most vascular plexuses without precise knowledge of the vessel orientation. The precision gradually decreases for larger en face angles.


Subject(s)
Blood Circulation , Tomography, Optical Coherence/methods , Arteries/physiology , Humans , Retina/physiology
16.
Eye Vis (Lond) ; 10(1): 30, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37525287

ABSTRACT

BACKGROUND: To comprehensively evaluate the agreement of component corneal aberrations from the newly updated wavefront analysis software of a swept-source optical coherence tomographer (SS-OCT) and a referential Placido-topography combined OCT device in elderly cataract patients. METHODS: Retrospective study including 103 eyes from 103 elderly patients scheduled for cataract surgery that were measured on the same day with a SS-OCT (Heidelberg Engineering, Germany) device and a Placido-topography combined OCT device (CSO, Italy). Anterior, total, and posterior corneal wavefront aberrations were evaluated for their mean differences and limits of agreement (LoA) via Bland-Altman plots. Vector analysis was additionally employed to compare corneal astigmatism measurements in dioptric vector space. RESULTS: Mean differences of all corneal aberrometric parameters did not exceed 0.05 µm. Total corneal aberrations were not significantly different from 0 except for vertical coma (- 0.04 µm; P = 0.003), spherical aberration (- 0.01 µm, P < 0.001), and root mean square (RMS) higher-order aberration (HOA) (0.03 µm, P = 0.04). The 95% LoA for total corneal aberration parameters between both devices were - 0.46 to 0.42 µm for horizontal astigmatism, - 0.37 to 0.41 µm for oblique astigmatism, - 0.19 to 0.17 µm for oblique trefoil, - 0.33 to 0.25 µm for vertical coma, - 0.20 to 0.22 µm for horizontal coma, - 0.22 to 0.20 µm for horizontal trefoil, - 0.11 to 0.08 µm for spherical aberration, and - 0.22 to 0.28 µm for RMS HOA. Vector analysis revealed no statistically significant mean differences for anterior, total, and posterior corneal astigmatism in dioptric vector space. CONCLUSION: In eyes undergoing cataract surgery with a regular elderly cornea, corneal wavefront analysis from the SS-OCT device showed functional equivalency to the reference device. Nevertheless, clinically relevant higher order aberration parameters should be interpreted with caution for surgical decision-making.

17.
Int J Pharm ; 643: 123096, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37268027

ABSTRACT

Optical Coherence Tomography (OCT) has recently gained attention as a promising technology for in-line monitoring of pharmaceutical film-coating processes for (single-layered) tablet coatings and end-point detection with commercial systems. An increasing interest in the investigation of multiparticulate dosage forms with mostly multi-layered coatings below 20 µm final film thickness demands advancement in OCT technology for pharmaceutical imaging. We present an ultra-high-resolution (UHR-) OCT and investigate its performance based on three different multiparticulate dosage forms with different layer structures (one single-layered, two multi-layered) with layer thicknesses in a range from 5 to 50 µm. The achieved system resolution of 2.4 µm (axial) and 3.4 µm (lateral, both in air) enables the assessment of defects, film thickness variability and morphological features within the coating, previously unattainable using OCT. Despite the high transverse resolution, the provided depth of field was found sufficient to reach the core region of all dosage forms under test. We further demonstrate an automated segmentation and evaluation of UHR-OCT images for coating thicknesses, where human experts struggle using today's standard OCT systems.


Subject(s)
Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Tablets , Surface Properties
18.
Biomed Opt Express ; 14(10): 5484-5487, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37854547

ABSTRACT

The guest editors introduce a feature issue commemorating the 30th anniversary of Optical Coherence Tomography.

19.
Biomed Opt Express ; 14(2): 846-865, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36874504

ABSTRACT

Intraoperative optical coherence tomography is still not overly pervasive in routine ophthalmic surgery, despite evident clinical benefits. That is because today's spectral-domain optical coherence tomography systems lack flexibility, acquisition speed, and imaging depth. We present to the best of our knowledge the most flexible swept-source optical coherence tomography (SS-OCT) engine coupled to an ophthalmic surgical microscope that operates at MHz A-scan rates. We use a MEMS tunable VCSEL to implement application-specific imaging modes, enabling diagnostic and documentary capture scans, live B-scan visualizations, and real-time 4D-OCT renderings. The technical design and implementation of the SS-OCT engine, as well as the reconstruction and rendering platform, are presented. All imaging modes are evaluated in surgical mock maneuvers using ex vivo bovine and porcine eye models. The applicability and limitations of MHz SS-OCT as a visualization tool for ophthalmic surgery are discussed.

20.
Sci Rep ; 13(1): 5760, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031338

ABSTRACT

By providing three-dimensional visualization of tissues and instruments at high resolution, live volumetric optical coherence tomography (4D-OCT) has the potential to revolutionize ophthalmic surgery. However, the necessary imaging speed is accompanied by increased noise levels. A high data rate and the requirement for minimal latency impose major limitations for real-time noise reduction. In this work, we propose a low complexity neural network for denoising, directly incorporated into the image reconstruction pipeline of a microscope-integrated 4D-OCT prototype with an A-scan rate of 1.2 MHz. For this purpose, we trained a blind-spot network on unpaired OCT images using a self-supervised learning approach. With an optimized U-Net, only a few milliseconds of additional latency were introduced. Simultaneously, these architectural adaptations improved the numerical denoising performance compared to the basic setup, outperforming non-local filtering algorithms. Layers and edges of anatomical structures in B-scans were better preserved than with Gaussian filtering despite comparable processing time. By comparing scenes with and without denoising employed, we show that neural networks can be used to improve visual appearance of volumetric renderings in real time. Enhancing the rendering quality is an important step for the clinical acceptance and translation of 4D-OCT as an intra-surgical guidance tool.


Subject(s)
Deep Learning , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Algorithms , Tomography, Optical Coherence/methods , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL