ABSTRACT
Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.
Subject(s)
Antibodies , Blotting, Western , Brain , Immunohistochemistry , tau Proteins , tau Proteins/metabolism , tau Proteins/immunology , Humans , Immunohistochemistry/methods , Antibodies/immunology , Brain/metabolism , Brain/pathology , Phosphorylation , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Reproducibility of ResultsABSTRACT
Type 1 diabetes arises from the selective destruction of pancreatic ß-cells by autoimmune mechanisms, and intracellular pathways driven by Janus kinase (JAK)-mediated phosphorylation of STAT isoforms (especially STAT1 and STAT2) are implicated as mediators of ß-cell demise. Despite this, the molecular mechanisms that regulate JAK-STAT signaling in ß-cells during the autoimmune attack remain only partially disclosed, and the factors acting to antagonize proinflammatory STAT1 signaling are uncertain. We have recently implicated signal regulatory protein α (SIRPα) in promoting ß-cell viability in the face of ongoing islet autoimmunity and have now revealed that this protein controls the availability of a cytosolic lysine deacetylase, HDAC6, whose activity regulates the phosphorylation and activation of STAT1. We provide evidence that STAT1 serves as a substrate for HDAC6 in ß-cells and that sequestration of HDAC6 by SIRPα in response to anti-inflammatory cytokines (e.g., IL-13) leads to increased STAT1 acetylation. This then impairs the ability of STAT1 to promote gene transcription in response to proinflammatory cytokines, including interferon-γ. We further found that SIRPα is lost from the ß-cells of subjects with recent-onset type 1 diabetes under conditions when HDAC6 is retained and STAT1 levels are increased. On this basis, we report a previously unrecognized role for cytokine-induced regulation of STAT1 acetylation in the control of ß-cell viability and propose that targeted inhibition of HDAC6 activity may represent a novel therapeutic modality to promote ß-cell viability in the face of active islet autoimmunity.
Subject(s)
Diabetes Mellitus, Type 1 , Histone Deacetylase 6 , Histone Deacetylases , Insulin-Secreting Cells , STAT1 Transcription Factor , Signal Transduction , Humans , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , STAT1 Transcription Factor/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Signal Transduction/drug effects , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Phosphorylation/drug effects , Acetylation/drug effectsABSTRACT
Background/Objectives: Cardiorespiratory complications are commonly reported among patients with long COVID-19 syndrome. However, their effects on exercise capacity remain inconclusive. We investigated the impact of long COVID-19 on exercise tolerance combining cardiopulmonary exercise testing (CPET) with resting echocardiographic data. Methods: Forty-two patients (55 ± 13 years), 149 ± 92 days post-hospital discharge, and ten healthy age-matched participants underwent resting echocardiography and an incremental CPET to the limit of tolerance. Left ventricular global longitudinal strain (LV-GLS) and the left ventricular ejection fraction (LVEF) were calculated to assess left ventricular systolic function. The E/e' ratio was estimated as a surrogate of left ventricular end-diastolic filling pressures. Tricuspid annular systolic velocity (SRV) was used to assess right ventricular systolic performance. Through tricuspid regurgitation velocity and inferior vena cava diameter, end-respiratory variations in systolic pulmonary artery pressure (PASP) were estimated. Peak work rate (WRpeak) and peak oxygen uptake (VO2peak) were measured via a ramp incremental symptom-limited CPET. Results: Compared to healthy participants, patients had a significantly (p < 0.05) lower LVEF (59 ± 4% versus 49 ± 5%) and greater left ventricular end-diastolic diameter (48 ± 2 versus 54 ± 5 cm). In patients, there was a significant association of E/e' with WRpeak (r = -0.325) and VO2peak (r = -0.341). SRV was significantly associated with WRpeak (r = 0.432) and VO2peak (r = 0.556). LV-GLS and PASP were significantly correlated with VO2peak (r = -0.358 and r = -0.345, respectively). Conclusions: In patients with long COVID-19 syndrome, exercise intolerance is associated with left ventricular diastolic performance, left ventricular end-diastolic pressure, PASP and SRV. These findings highlight the interrelationship of exercise intolerance with left and right ventricular performance in long COVID-19 syndrome.
ABSTRACT
BACKGROUND: Reticulation, ground glass opacities and post-infection bronchiectasis are present three months following hospitalisation in patients recovering from SARS-CoV-2 infection and are associated with the severity of acute infection. However, scarce data exist on small airways impairment and lung hyperinflation in patients with long COVID-19. AIM: To evaluate small airways function and lung hyperinflation in previously hospitalised patients with long COVID-19 and their association with post-COVID-19 breathlessness. METHODS: In total, 33 patients (mean ± SD, 53 ± 11 years) with long COVID-19 were recruited 149 ± 90 days following hospital discharge. Pulmonary function tests were performed and lung hyperinflation was defined as RV/TLC ≥ 40%. Small airways function was evaluated by measuring the closing volume (CV) and closing capacity (CC) using the single-breath nitrogen washout technique (SBN2W). RESULTS: CC was 115 ± 28% pred. and open capacity (OC) was 90 ± 19. CC was abnormal in 13 patients (39%), CV in 2 patients (6.1%) and OC in 9 patients (27%). Lung hyperinflation was present in 15 patients, whilst the mean mMRC score was 2.2 ± 1.0. Lung hyperinflation was associated with CC (r = 0.772, p = 0.001), OC (r = 0.895, p = 0.001) and mMRC (r = 0.444, p = 0.010). CONCLUSIONS: Long COVID-19 patients present with small airways dysfunction and lung hyperinflation, which is associated with persistent dyspnoea, following hospitalisation.
Subject(s)
COVID-19 , Dyspnea , Respiratory Function Tests , Humans , COVID-19/physiopathology , COVID-19/complications , Dyspnea/physiopathology , Dyspnea/etiology , Middle Aged , Male , Female , Lung/physiopathology , Lung/diagnostic imaging , SARS-CoV-2 , Adult , Post-Acute COVID-19 Syndrome , AgedABSTRACT
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic ß-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed ß-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting ß-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.