Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Proc Natl Acad Sci U S A ; 120(38): e2310914120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695903

ABSTRACT

Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.


Subject(s)
Extracellular Vesicles , Signal Transduction , Humans , Biological Transport , Cell Communication , Cell Division , Syndecans , Transcription Factors
2.
Brain ; 146(5): 1844-1858, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36314052

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Subject(s)
Charcot-Marie-Tooth Disease , Animals , Mice , Charcot-Marie-Tooth Disease/genetics , Guanine Nucleotide Exchange Factors/genetics , Mice, Knockout , Mutation , Neuregulin-1/metabolism , Schwann Cells , Sciatic Nerve/pathology , Sorting Nexins/genetics , Sorting Nexins/metabolism
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34353909

ABSTRACT

Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection. However, it remains poorly understood how bacterial pathogens exploit ER quality-control functions to complete their intracellular cycle. Brucella spp. replicate extensively within an ER-derived niche, which evolves into specialized vacuoles suited for exit from infected cells. Here we present Brucella-secreted protein L (BspL), a Brucella abortus effector that interacts with Herp, a central component of the ER-associated degradation (ERAD) machinery. We found that BspL enhances ERAD at the late stages of the infection. BspL targeting of Herp and ERAD allows tight control of the kinetics of autophagic Brucella-containing vacuole formation, delaying the last step of its intracellular cycle and cell-to-cell spread. This study highlights a mechanism by which a bacterial pathogen hijacks ERAD components for fine regulation of its intracellular trafficking.


Subject(s)
Bacterial Proteins/metabolism , Brucella abortus/pathogenicity , Brucellosis/metabolism , Animals , Bacterial Proteins/genetics , Brucella abortus/metabolism , Brucellosis/microbiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , HeLa Cells , Host-Pathogen Interactions/physiology , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Transcription Factor CHOP/genetics , Type IV Secretion Systems/metabolism , X-Box Binding Protein 1/genetics
4.
Proc Natl Acad Sci U S A ; 117(11): 5913-5922, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32108028

ABSTRACT

Exosomes, extracellular vesicles (EVs) of endosomal origin, emerge as master regulators of cell-to-cell signaling in physiology and disease. Exosomes are highly enriched in tetraspanins (TSPNs) and syndecans (SDCs), the latter occurring mainly in proteolytically cleaved form, as membrane-spanning C-terminal fragments of the proteins. While both protein families are membrane scaffolds appreciated for their role in exosome formation, composition, and activity, we currently ignore whether these work together to control exosome biology. Here we show that TSPN6, a poorly characterized tetraspanin, acts as a negative regulator of exosome release, supporting the lysosomal degradation of SDC4 and syntenin. We demonstrate that TSPN6 tightly associates with SDC4, the SDC4-TSPN6 association dictating the association of TSPN6 with syntenin and the TSPN6-dependent lysosomal degradation of SDC4-syntenin. TSPN6 also inhibits the shedding of the SDC4 ectodomain, mimicking the effects of matrix metalloproteinase inhibitors. Taken together, our data identify TSPN6 as a regulator of the trafficking and processing of SDC4 and highlight an important physical and functional interconnection between these membrane scaffolds for the production of exosomes. These findings clarify our understanding of the molecular determinants governing EV formation and have potentially broad impact for EV-related biomedicine.


Subject(s)
Exosomes/metabolism , Syntenins/metabolism , Tetraspanins/metabolism , Cell Communication , Exosomes/genetics , Extracellular Vesicles/metabolism , Humans , Lysosomes/metabolism , MCF-7 Cells , Matrix Metalloproteinases/metabolism , Protein Transport , Syndecan-4/metabolism , Syndecans/metabolism
5.
Proc Natl Acad Sci U S A ; 114(47): 12495-12500, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109268

ABSTRACT

The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.


Subject(s)
Cell Communication/genetics , Exosomes/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Oncogene Protein pp60(v-src)/genetics , Syntenins/genetics , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Amino Acid Motifs , Cell Movement , Cell Proliferation , Culture Media, Conditioned/pharmacology , Endocytosis , Endosomes/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MCF-7 Cells , Oncogene Protein pp60(v-src)/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Phosphorylation , Signal Transduction , Syndecans/genetics , Syndecans/metabolism , Syntenins/metabolism
6.
PLoS Genet ; 13(6): e1006803, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617811

ABSTRACT

Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.


Subject(s)
Carrier Proteins/metabolism , Cell Adhesion Molecules/metabolism , Golgi Apparatus/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Spermatogenesis , Spermatogonia/metabolism , Animals , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cells, Cultured , Golgi Apparatus/ultrastructure , Intracellular Signaling Peptides and Proteins , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Protein Binding , Protein Transport , Spermatogonia/cytology
7.
J Immunol ; 199(7): 2408-2420, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28807996

ABSTRACT

Klhl6 belongs to the KLHL gene family, which is composed of an N-terminal BTB-POZ domain and four to six Kelch motifs in tandem. Several of these proteins function as adaptors of the Cullin3 E3 ubiquitin ligase complex. In this article, we report that Klhl6 deficiency induces, as previously described, a 2-fold reduction in mature B cells. However, we find that this deficit is centered on the inability of transitional type 1 B cells to survive and to progress toward the transitional type 2 B cell stage, whereas cells that have passed this step generate normal germinal centers (GCs) upon a T-dependent immune challenge. Klhl6-deficient type 1 B cells showed a 2-fold overexpression of genes linked with cell proliferation, including most targets of the anaphase-promoting complex/cyclosome complex, a set of genes whose expression is precisely downmodulated upon culture of splenic transitional B cells in the presence of BAFF. These results thus suggest a delay in the differentiation process of Klhl6-deficient B cells between the immature and transitional stage. We further show, in the BL2 Burkitt's lymphoma cell line, that KLHL6 interacts with Cullin3, but also that it binds to HBXIP/Lamtor5, a protein involved in cell-cycle regulation and cytokinesis. Finally, we report that KLHL6, which is recurrently mutated in B cell lymphomas, is an off-target of the normal somatic hypermutation process taking place in GC B cells in both mice and humans, thus leaving open whether, despite the lack of impact of Klhl6 deficiency on GC B cell expansion, mutants could contribute to the oncogenic process.


Subject(s)
B-Lymphocytes/physiology , Carrier Proteins/physiology , Germinal Center/cytology , Animals , B-Lymphocytes/immunology , Burkitt Lymphoma/pathology , Carrier Proteins/genetics , Cell Differentiation , Cell Line , Cell Proliferation , Germinal Center/immunology , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Mice , Mutation , Precursor Cells, B-Lymphoid/physiology
8.
Hum Mol Genet ; 25(3): 497-513, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26643951

ABSTRACT

Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.


Subject(s)
Centrioles/metabolism , Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Orofaciodigital Syndromes/metabolism , Proteins/metabolism , Amino Acid Sequence , Base Sequence , Centrioles/ultrastructure , Centrosome/ultrastructure , Cilia/genetics , Cilia/metabolism , Cilia/pathology , Conserved Sequence , Female , Gene Expression , Heterozygote , Humans , Infant, Newborn , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Mutation , Orofaciodigital Syndromes/genetics , Orofaciodigital Syndromes/pathology , Protein Binding , Proteins/genetics , Sequence Alignment
9.
J Immunol ; 196(10): 4367-77, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27183644

ABSTRACT

Hematopoietic stem cells (HSCs) located in adult bone marrow or fetal liver in mammals produce all cells from the blood system. At the top of the hierarchy are long-term HSCs endowed with lifelong self-renewal and differentiation properties. These features are controlled through key microenvironmental cues and regulatory pathways, such as Wnt signaling. We showed previously that PTK7, a tyrosine kinase receptor involved in planar cell polarity, plays a role in epithelial Wnt signaling; however, its function in hematopoiesis has remained unexplored. In this article, we show that PTK7 is expressed by hematopoietic stem and progenitor cells, with the highest level of protein expression found on HSCs. Taking advantage of a Ptk7-deficient mouse strain, we demonstrate that loss of Ptk7 leads to a diminished pool of HSCs but does not affect in vitro or in vivo hematopoietic cell differentiation. This is correlated with increased quiescence and reduced homing abilities of Ptk7-deficient hematopoietic stem and progenitor cells, unraveling novel and unexpected functions for planar cell polarity pathways in HSC fate.


Subject(s)
Cell Movement , Cell Proliferation , Hematopoiesis , Hematopoietic Stem Cells/cytology , Receptor Protein-Tyrosine Kinases/genetics , Animals , Cell Adhesion , Cell Line , Cell Polarity , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
10.
Development ; 139(20): 3775-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22991442

ABSTRACT

Vangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell are largely unknown. Here, we identify Gipc1 (GAIP C-terminus interacting protein 1) as a new interactor for Vangl2, and we show that a myosin VI-Gipc1 protein complex can regulate Vangl2 traffic in heterologous cells. Furthermore, we show that in the cochlea of MyoVI mutant mice, Vangl2 presence at the membrane is increased, and that a disruption of Gipc1 function in hair cells leads to maturation defects, including defects in hair bundle orientation and integrity. Finally, stimulated emission depletion microscopy and overexpression of GFP-Vangl2 show an enrichment of Vangl2 on the supporting cell side, adjacent to the proximal membrane of hair cells. Altogether, these results indicate a broad role for Gipc1 in the development of both stereociliary bundles and cell polarization, and suggest that the strong asymmetry of Vangl2 observed in early postnatal cochlear epithelium is mostly a 'tissue' polarity readout.


Subject(s)
Carrier Proteins/metabolism , Ear, Inner/metabolism , Hair Cells, Auditory, Inner/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Carrier Proteins/genetics , Cell Line , Cell Membrane/metabolism , Chlorocebus aethiops , Down-Regulation , Green Fluorescent Proteins/biosynthesis , HEK293 Cells , Humans , Mice , Myosin Heavy Chains/genetics , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuropeptides/genetics , Protein Transport , RNA Interference , RNA, Small Interfering , Rats , Rats, Sprague-Dawley , Transport Vesicles/metabolism
11.
Mol Cell Proteomics ; 12(9): 2587-603, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23722234

ABSTRACT

Protein-protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRß, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.


Subject(s)
PDZ Domains , Proteome/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Cell Movement , Embryo, Nonmammalian/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescence , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Molecular Sequence Data , Morphogenesis , Oncogene Proteins, Viral/metabolism , Protein Interaction Mapping , Protein Kinases/chemistry , Protein Kinases/metabolism , Reproducibility of Results , Sorting Nexins/metabolism , Tumor Suppressor Proteins/metabolism , Two-Hybrid System Techniques , Xenopus/embryology , Xenopus/metabolism
12.
EMBO Rep ; 12(1): 43-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21132015

ABSTRACT

The receptor protein tyrosine kinase 7 (PTK7) was recently shown to participate in noncanonical Wnt/planar cell polarity signalling during mouse and frog embryonic development. In this study, we report that PTK7 interacts with ß-catenin in a yeast two-hybrid assay and mammalian cells. PTK7-deficient cells exhibit weakened ß-catenin/T-cell factor transcriptional activity on Wnt3a stimulation. Furthermore, Xenopus PTK7 is required for the formation of Spemann's organizer and for Siamois promoter activation, events that require ß-catenin transcriptional activity. Using epistatic assays, we demonstrate that PTK7 functions upstream from glycogen synthase kinase 3. Taken together, our data reveal a new and conserved role for PTK7 in the Wnt canonical signalling pathway.


Subject(s)
Receptor Protein-Tyrosine Kinases/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Adhesion Molecules/physiology , Embryo, Mammalian , Embryo, Nonmammalian , Glycogen Synthase Kinase 3/metabolism , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Knockout , Organizers, Embryonic/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction , Two-Hybrid System Techniques , Xenopus Proteins/metabolism , Xenopus laevis
13.
Membranes (Basel) ; 13(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37623798

ABSTRACT

PSD95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal sequences of a plethora of membrane-associated proteins and influence their trafficking and signaling. We previously built a PDZ resource (PDZome) allowing us to unveil human PDZ interactions by Yeast two-hybrid. Yet, this resource is incomplete according to the current knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast two-hybrid, based on a PDZ library manually curated from online resources. The PDZome2.0 contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all boundaries were designed based on available PDZ structures. Using as bait the E6 oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0 outperforms the previous resource.

14.
Nat Commun ; 14(1): 102, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609656

ABSTRACT

The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection. By sequestering SENP3, the effectors promote cytoplasmic accumulation of nucleolar AAA-ATPase NVL and ribosomal protein L5 (RPL5) in effector-enriched structures in the vicinity of replicating bacteria. The shuttling of ribosomal biogenesis-associated nucleolar proteins is inhibited by SENP3 and requires the autophagy-initiation protein Beclin1 and the SUMO-E3 ligase PIAS3. Our results highlight a nucleomodulatory function of two Brucella effectors and reveal that SENP3 is a crucial regulator of the subcellular localisation of nucleolar proteins during Brucella infection, promoting intracellular replication of the pathogen.


Subject(s)
Brucellosis , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Cell Nucleus/metabolism , Brucella abortus/metabolism , Cell Nucleolus/metabolism , Brucellosis/microbiology , Molecular Chaperones/metabolism , Protein Inhibitors of Activated STAT/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism
15.
Sci Rep ; 11(1): 4083, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602969

ABSTRACT

Exosomal transfers represent an important mode of intercellular communication. Syntenin is a small scaffold protein that, when binding ALIX, can direct endocytosed syndecans and syndecan cargo to budding endosomal membranes, supporting the formation of intraluminal vesicles that compose the source of a major class of exosomes. Syntenin, however, can also support the recycling of these same components to the cell surface. Here, by studying mice and cells with syntenin-knock out, we identify syntenin as part of dedicated machinery that integrates both the production and the uptake of secreted vesicles, supporting viral/exosomal exchanges. This study significantly extends the emerging role of heparan sulfate proteoglycans and syntenin as key components for macromolecular cargo internalization into cells.


Subject(s)
Exosomes/metabolism , Syntenins/physiology , Animals , Exosomes/virology , Gene Expression Regulation , Gene Knockout Techniques/methods , Humans , MCF-7 Cells , Mice , Syntenins/metabolism , Transduction, Genetic
16.
FEBS Lett ; 590(1): 3-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26787460

ABSTRACT

Syntenin has crucial roles in cell adhesion, cell migration and synaptic transmission. Its closely linked postsynaptic density-95, discs large 1, zonula occludens-1 (PDZ) domains typically interact with C-terminal ligands. We profile syntenin PDZ1-2 through proteomic peptide phage display (ProP-PD) using a library that displays C-terminal regions of the human proteome. The protein recognizes a broad range of peptides, with a preference for hydrophobic motifs and has a tendency to recognize cryptic internal ligands. We validate the interaction with nectin-1 through orthogonal assays. The study demonstrates the power of ProP-PD as a complementary approach to uncover interactions of potential biological relevance.


Subject(s)
Models, Molecular , Syntenins/metabolism , Amino Acid Motifs , Animals , Binding Sites , COS Cells , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chlorocebus aethiops , Computational Biology , Humans , Hydrophobic and Hydrophilic Interactions , Immobilized Proteins/chemistry , Immobilized Proteins/genetics , Immobilized Proteins/metabolism , Kinetics , Ligands , MCF-7 Cells , Nectins , PDZ Domains , Peptide Fragments/chemistry , Peptide Fragments/classification , Peptide Fragments/metabolism , Peptide Library , Proteomics/methods , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/metabolism , Syntenins/chemistry , Syntenins/genetics , Two-Hybrid System Techniques
17.
Front Pharmacol ; 6: 241, 2015.
Article in English | MEDLINE | ID: mdl-26539120

ABSTRACT

The scaffold protein syntenin abounds during fetal life where it is important for developmental movements. In human adulthood, syntenin gain-of-function is increasingly associated with various cancers and poor prognosis. Depending on the cancer model analyzed, syntenin affects various signaling pathways. We previously have shown that syntenin allows syndecan heparan sulfate proteoglycans to escape degradation. This indicates that syntenin has the potential to support sustained signaling of a plethora of growth factors and adhesion molecules. Here, we aim to clarify the impact of syntenin loss-of-function on cancer cell migration, growth, and proliferation, using cells from various cancer types and syntenin shRNA and siRNA silencing approaches. We observed decreased migration, growth, and proliferation of the mouse melanoma cell line B16F10, the human colon cancer cell line HT29 and the human breast cancer cell line MCF7. We further documented that syntenin controls the presence of active ß1 integrin at the cell membrane and G1/S cell cycle transition as well as the expression levels of CDK4, Cyclin D2, and Retinoblastoma proteins. These data confirm that syntenin supports the migration and growth of tumor cells, independently of their origin, and further highlight the attractiveness of syntenin as potential therapeutic target.

19.
Nat Commun ; 5: 3477, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24637612

ABSTRACT

Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.


Subject(s)
ADP-Ribosylation Factors/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , Multivesicular Bodies/metabolism , Phospholipase D/metabolism , Syntenins/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Calcium-Binding Proteins/genetics , Cell Cycle Proteins/genetics , Cell Line , Endosomal Sorting Complexes Required for Transport/genetics , ErbB Receptors/metabolism , Exosomes/enzymology , Exosomes/genetics , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Multivesicular Bodies/enzymology , Multivesicular Bodies/genetics , Phospholipase D/genetics , Protein Transport , Syntenins/genetics
20.
PLoS One ; 9(1): e86476, 2014.
Article in English | MEDLINE | ID: mdl-24475127

ABSTRACT

Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.


Subject(s)
Actins/physiology , Carrier Proteins/metabolism , Cilia/physiology , Zebrafish/genetics , Animals , Base Sequence , Carrier Proteins/genetics , Cell Line , Cilia/genetics , Computational Biology , Cytoskeletal Proteins , DNA Primers/genetics , Fluorescence Resonance Energy Transfer , Gene Expression Profiling , Gene Knockdown Techniques , Green Fluorescent Proteins , Humans , Immunohistochemistry , In Situ Hybridization , Luminescent Proteins , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Two-Hybrid System Techniques , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL