Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33508229

ABSTRACT

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Subject(s)
Cranial Sinuses/immunology , Cranial Sinuses/physiology , Dura Mater/immunology , Dura Mater/physiology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigens/cerebrospinal fluid , Cellular Senescence , Chemokine CXCL12/pharmacology , Dura Mater/blood supply , Female , Homeostasis , Humans , Immunity , Male , Mice, Inbred C57BL , Phenotype , Stromal Cells/cytology , T-Lymphocytes/cytology
2.
Cell ; 181(7): 1445-1449, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32533917

ABSTRACT

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Subject(s)
Career Mobility , Research Personnel/trends , Research/trends , Achievement , Biomedical Research , Humans , Research Personnel/education , Science/education , Science/trends , Universities
3.
Nature ; 608(7923): 586-592, 2022 08.
Article in English | MEDLINE | ID: mdl-35859170

ABSTRACT

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Subject(s)
Basolateral Nuclear Complex , Learning , Neural Pathways , Neurotensin , Punishment , Reward , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/physiology , Calcium/metabolism , Cues , Neuronal Plasticity , Neurotensin/metabolism , Optogenetics , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology
4.
World Neurosurg X ; 23: 100312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38497058

ABSTRACT

Calcifying pseudoneoplasms of the neuraxis (CAPNON) are rare, non-neoplastic, slow-growing tumors that can present anywhere throughout the central nervous system. While the etiology of these lesions remains unknown, the mainstay of treatment is surgical excision. We describe a case of CAPNON at our institution in a 66 year-old female patient who presented with 5 months of pain and burning sensation in her thigh. On MRI, an intradural extramedullary lesion was identified at the level of T11-T12. The mass was surgically excised and the patient reported resolution of her symptoms by her six week follow-up appointment. We reviewed 79 spinal CAPNON cases, covering all cases reported in the literature thus far. In summary, we find that spinal CAPNON are most commonly lumbar and extradural in location, with pain as the most common presenting symptom. Lesions are well-defined and hypointense on T1 and T2 MRI sequence. The majority of cases had favorable surgical outcomes with near complete resolution of pain and associated symptoms.

5.
AJP Rep ; 13(3): e49-e52, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37786805

ABSTRACT

Complete hydatidiform mole with coexisting fetus (CHMCF) is rare, and diagnosis is challenging due to limited data. Here, we present the case of a patient with noninvasive prenatal test (NIPT) resulting in "likely molar pregnancy" in the second trimester. Subsequent ultrasound confirmed a cystic appearing portion of the placenta. At 22 weeks, the patient delivered a demised fetus and two placentas. Pathology was consistent with CHMCF. This case is the first to show primary detection of a CHMCF with single-nucleotide polymorphism (SNP)-based NIPT prior to ultrasound identification. Our case suggests the use of SNP-based NIPT as an alternative noninvasive method to guide shared decision-making and clinical management for patients with this diagnosis.

6.
Front Neurol ; 14: 1287559, 2023.
Article in English | MEDLINE | ID: mdl-38283681

ABSTRACT

Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.

7.
Science ; 379(6628): eadd1236, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36634180

ABSTRACT

Tau-mediated neurodegeneration is a hallmark of Alzheimer's disease. Primary tauopathies are characterized by pathological tau accumulation and neuronal and synaptic loss. Apolipoprotein E (ApoE)-mediated neuroinflammation is involved in the progression of tau-mediated neurodegeneration, and emerging evidence suggests that the gut microbiota regulates neuroinflammation in an APOE genotype-dependent manner. However, evidence of a causal link between the microbiota and tau-mediated neurodegeneration is lacking. In this study, we characterized a genetically engineered mouse model of tauopathy expressing human ApoE isoforms reared under germ-free conditions or after perturbation of their gut microbiota with antibiotics. Both of these manipulations reduced gliosis, tau pathology, and neurodegeneration in a sex- and ApoE isoform-dependent manner. The findings reveal mechanistic and translationally relevant interrelationships between the microbiota, neuroinflammation, and tau-mediated neurodegeneration.


Subject(s)
Apolipoproteins E , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Tauopathies , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Mice, Transgenic , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/microbiology , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/microbiology , Sex Factors
8.
FASEB Bioadv ; 3(6): 439-448, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34124599

ABSTRACT

There exists a dearth of supplementary programs to educate physician-scientist trainees on anti-racism and topics surrounding social justice in medicine and science. Education on these topics is critical to prevent the perpetuation of systemic racism within the institutions of academia and medicine. Students in the Washington University School of Medicine Medical Scientist Training Program and the Tri-Institutional MD-PhD Program developed journal clubs with curricula focused on social justice and anti-racism for the summer of 2020. In this article, we describe the impact of the Washington University journal club on the education of first year MD-PhD students and summarize the progress to date. The role of the journal club in the midst of the "double pandemic" of COVID-19 and generational systemic racism is discussed, highlighting the need for such supplemental curricula in MD-PhD programs nation-wide.

9.
Cell Rep Med ; 1(6): 100100, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32984857

ABSTRACT

Recent guidance from the US Immigration and Customs Enforcement drastically altered the lives of international students in America, especially those who are matriculating. This commentary describes how international students still face uncertainty concerning their visa statuses and their place in American society.


Subject(s)
Education, Distance/legislation & jurisprudence , Emigration and Immigration/legislation & jurisprudence , Students/psychology , Education/legislation & jurisprudence , Education/trends , Education, Distance/trends , Emigration and Immigration/trends , Government Programs , Humans , Internationality , Public Policy/trends , Students/legislation & jurisprudence , United States
10.
Bio Protoc ; 10(9): e3615, 2020 May 05.
Article in English | MEDLINE | ID: mdl-33659578

ABSTRACT

CRISPR-Cas9 technology has transformed the ability to edit genomic sequences and control gene expression with unprecedented ease and scale. However, precise genomic insertions of coding sequences using this technology remain time-consuming and inefficient because they require introducing adjacent single-strand cuts through Cas9 nickase action and invoking the host-encoded homology-directed repair program through the concomitant introduction of large repair templates. Here, we present a system for the rapid study of any protein-of-interest in two neuronal cell models following its inducible expression from the human AAVS1 safe harbor locus. With lox-flanked foundation cassettes in the AAVS1 site and a tailor-made plasmid for accepting coding sequences-of-interest in place, the system allows investigators to produce their own neuronal cell models for the inducible expression of any coding sequence in less than a month. Due to the availability of preinserted enhanced green fluorescent protein (EGFP) coding sequences that can be fused to the protein-of-interest, the system facilitates functional investigations that track a protein-of-interest by live-cell microscopy as well as interactome analyses that capitalize on the availability of exquisitely efficient EGFP capture matrices.

11.
Sci Rep ; 9(1): 16238, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700063

ABSTRACT

Protein interactions of Tau are of interest in efforts to decipher pathogenesis in Alzheimer's disease, a subset of frontotemporal dementias, and other tauopathies. We CRISPR-Cas9 edited two human cell lines to generate broadly adaptable models for neurodegeneration research. We applied the system to inducibly express balanced levels of 3-repeat and 4-repeat wild-type or P301L mutant Tau. Following 12-h induction, quantitative mass spectrometry revealed the Parkinson's disease-causing protein DJ-1 and non-muscle myosins as Tau interactors whose binding to Tau was profoundly influenced by the presence or absence of the P301L mutation. The presence of wild-type Tau stabilized non-muscle myosins at higher steady-state levels. Strikingly, in human differentiated co-cultures of neuronal and glial cells, the preferential interaction of non-muscle myosins to wild-type Tau depended on myosin ATPase activity. Consistently, transgenic P301L Tau mice exhibited reduced phosphorylation of regulatory myosin light chains known to activate this ATPase. The direct link of Tau to non-muscle myosins corroborates independently proposed roles of Tau in maintaining dendritic spines and mitochondrial fission biology, two subcellular niches affected early in tauopathies.


Subject(s)
Adenosine Triphosphatases/metabolism , CRISPR-Cas Systems/genetics , Cell Engineering , Mutation , Neurons/metabolism , Protein Interaction Mapping , tau Proteins/metabolism , Astrocytes/cytology , Coculture Techniques , Humans , Myosins/metabolism , Neurons/cytology , Protein Binding , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL