ABSTRACT
While 1-2% of individuals meet the criteria for a clinical diagnosis of obsessive-compulsive disorder (OCD), many more (~13-38%) experience subclinical obsessive-compulsive symptoms (OCS) during their life. To characterize the genetic underpinnings of OCS and its genetic relationship to OCD, we conducted the largest genome-wide association study (GWAS) meta-analysis of parent- or self-reported OCS to date (N = 33,943 with complete phenotypic and genome-wide data), combining the results from seven large-scale population-based cohorts from Sweden, the Netherlands, England, and Canada (including six twin cohorts and one cohort of unrelated individuals). We found no genome-wide significant associations at the single-nucleotide polymorphism (SNP) or gene-level, but a polygenic risk score (PRS) based on the OCD GWAS previously published by the Psychiatric Genetics Consortium (PGC-OCD) was significantly associated with OCS (Pfixed = 3.06 × 10-5). Also, one curated gene set (Mootha Gluconeogenesis) reached Bonferroni-corrected significance (Ngenes = 28, Beta = 0.79, SE = 0.16, Pbon = 0.008). Expression of genes in this set is high at sites of insulin mediated glucose disposal. Dysregulated insulin signaling in the etiology of OCS has been suggested by a previous study describing a genetic overlap of OCS with insulin signaling-related traits in children and adolescents. We report a SNP heritability of 4.1% (P = 0.0044) in the meta-analyzed GWAS, and heritability estimates based on the twin cohorts of 33-43%. Genetic correlation analysis showed that OCS were most strongly associated with OCD (rG = 0.72, p = 0.0007) among all tested psychiatric disorders (N = 11). Of all 97 tested phenotypes, 24 showed a significant genetic correlation with OCS, and 66 traits showed concordant directions of effect with OCS and OCD. OCS have a significant polygenic contribution and share genetic risk with diagnosed OCD, supporting the hypothesis that OCD represents the extreme end of widely distributed OCS in the population.
Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Obsessive-Compulsive Disorder , Polymorphism, Single Nucleotide , Humans , Canada , Cohort Studies , England/epidemiology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Netherlands , Obsessive-Compulsive Disorder/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , SwedenABSTRACT
Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however, their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites and four ancestries (N = 14,877) using cognitive traits derived from the stop-signal task, namely - go reaction time (GoRT), go reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using objective behavioural traits derived from the stop-signal task.
Subject(s)
Genome-Wide Association Study , Schizophrenia , Humans , Genome-Wide Association Study/methods , Schizophrenia/genetics , Executive Function , Multifactorial Inheritance/genetics , Endophenotypes , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/geneticsABSTRACT
Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.
Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Gene Rearrangement/genetics , Genome, Human/genetics , Models, Biological , Mutagenesis/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma in Situ/genetics , Chromothripsis , DNA Copy Number Variations/genetics , Disease Progression , Evolution, Molecular , Female , Genes, Neoplasm/genetics , Humans , Male , Mitosis/genetics , Mutation/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Polyploidy , Precancerous Conditions/geneticsABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among solid malignancies and improved therapeutic strategies are needed to improve outcomes. Patient-derived xenografts (PDX) and patient-derived organoids (PDO) serve as promising tools to identify new drugs with therapeutic potential in PDAC. For these preclinical disease models to be effective, they should both recapitulate the molecular heterogeneity of PDAC and validate patient-specific therapeutic sensitivities. To date however, deep characterization of the molecular heterogeneity of PDAC PDX and PDO models and comparison with matched human tumour remains largely unaddressed at the whole genome level. We conducted a comprehensive assessment of the genetic landscape of 16 whole-genome pairs of tumours and matched PDX, from primary PDAC and liver metastasis, including a unique cohort of 5 'trios' of matched primary tumour, PDX, and PDO. We developed a pipeline to score concordance between PDAC models and their paired human tumours for genomic events, including mutations, structural variations, and copy number variations. Tumour-model comparisons of mutations displayed single-gene concordance across major PDAC driver genes, but relatively poor agreement across the greater mutational load. Genome-wide and chromosome-centric analysis of structural variation (SV) events highlights previously unrecognized concordance across chromosomes that demonstrate clustered SV events. We found that polyploidy presented a major challenge when assessing copy number changes; however, ploidy-corrected copy number states suggest good agreement between donor-model pairs. Collectively, our investigations highlight that while PDXs and PDOs may serve as tractable and transplantable systems for probing the molecular properties of PDAC, these models may best serve selective analyses across different levels of genomic complexity.
Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Genome/genetics , Models, Biological , Neoplasms, Experimental/genetics , Pancreatic Neoplasms/genetics , Animals , Biomedical Research/standards , Humans , Pancreas/pathologyABSTRACT
We conducted a case-control exome-wide association study to discover germline variants in coding regions that affect risk for pancreatic cancer, combining data from 5 studies. We analyzed exome and genome sequencing data from 437 patients with pancreatic cancer (cases) and 1922 individuals not known to have cancer (controls). In the primary analysis, BRCA2 had the strongest enrichment for rare inactivating variants (17/437 cases vs 3/1922 controls) (P = 3.27x10-6; exome-wide statistical significance threshold P < 2.5x10-6). Cases had more rare inactivating variants in DNA repair genes than controls, even after excluding 13 genes known to predispose to pancreatic cancer (adjusted odds ratio, 1.35; P = .045). At the suggestive threshold (P < .001), 6 genes were enriched for rare damaging variants (UHMK1, AP1G2, DNTA, CHST6, FGFR3, and EPHA1) and 7 genes had associations with pancreatic cancer risk, based on the sequence-kernel association test. We confirmed variants in BRCA2 as the most common high-penetrant genetic factor associated with pancreatic cancer and we also identified candidate pancreatic cancer genes. Large collaborations and novel approaches are needed to overcome the genetic heterogeneity of pancreatic cancer predisposition.
Subject(s)
Biomarkers, Tumor/genetics , Exome Sequencing , Exome , Genetic Variation , Pancreatic Neoplasms/genetics , BRCA2 Protein/genetics , Case-Control Studies , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Odds Ratio , Pancreatic Neoplasms/diagnosis , Phenotype , Risk Assessment , Risk FactorsABSTRACT
Genome-wide association studies (GWAS) have identified many genetic susceptibility loci for colorectal cancer (CRC). However, variants in these loci explain only a small proportion of familial aggregation, and there are likely additional variants that are associated with CRC susceptibility. Genome-wide studies of gene-environment interactions may identify variants that are not detected in GWAS of marginal gene effects. To study this, we conducted a genome-wide analysis for interaction between genetic variants and alcohol consumption and cigarette smoking using data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Interactions were tested using logistic regression. We identified interaction between CRC risk and alcohol consumption and variants in the 9q22.32/HIATL1 (Pinteraction = 1.76×10-8; permuted p-value 3.51x10-8) region. Compared to non-/occasional drinking light to moderate alcohol consumption was associated with a lower risk of colorectal cancer among individuals with rs9409565 CT genotype (OR, 0.82 [95% CI, 0.74-0.91]; P = 2.1×10-4) and TT genotypes (OR,0.62 [95% CI, 0.51-0.75]; P = 1.3×10-6) but not associated among those with the CC genotype (p = 0.059). No genome-wide statistically significant interactions were observed for smoking. If replicated our suggestive finding of a genome-wide significant interaction between genetic variants and alcohol consumption might contribute to understanding colorectal cancer etiology and identifying subpopulations with differential susceptibility to the effect of alcohol on CRC risk.
Subject(s)
Alcohol Drinking/genetics , Colorectal Neoplasms/genetics , Membrane Transport Proteins/genetics , Smoking/genetics , Tumor Suppressor Proteins/genetics , Aged , Alcohol Drinking/pathology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/pathology , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Smoking/pathologyABSTRACT
Diagnosing pleiotropy is critical for assessing the validity of Mendelian randomization (MR) analyses. The popular MR-Egger method evaluates whether there is evidence of bias-generating pleiotropy among a set of candidate genetic instrumental variables. In this article, we propose a statistical method-global and individual tests for direct effects (GLIDE)-for systematically evaluating pleiotropy among the set of genetic variants (e.g., single nucleotide polymorphisms (SNPs)) used for MR. As a global test, simulation experiments suggest that GLIDE is nearly uniformly more powerful than the MR-Egger method. As a sensitivity analysis, GLIDE is capable of detecting outliers in individual variant-level pleiotropy, in order to obtain a refined set of genetic instrumental variables. We used GLIDE to analyze both body mass index and height for associations with colorectal cancer risk in data from the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry (multiple studies). Among the body mass index-associated SNPs and the height-associated SNPs, several individual variants showed evidence of pleiotropy. Removal of these potentially pleiotropic SNPs resulted in attenuation of respective estimates of the causal effects. In summary, the proposed GLIDE method is useful for sensitivity analyses and improves the validity of MR.
Subject(s)
Genetic Pleiotropy , Mendelian Randomization Analysis/methods , Body Height , Body Mass Index , Causality , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Computer Simulation , Humans , Polymorphism, Single Nucleotide , Reproducibility of ResultsABSTRACT
BACKGROUND: Substantial evidence supports an association between use of menopausal hormone therapy and decreased colorectal cancer (CRC) risk, indicating a role of exogenous sex hormones in CRC development. However, findings on endogenous oestrogen exposure and CRC are inconsistent. METHODS: We used a Mendelian randomisation approach to test for a causal effect of age at menarche and age at menopause as surrogates for endogenous oestrogen exposure on CRC risk. Weighted genetic risk scores based on 358 single-nucleotide polymorphisms associated with age at menarche and 51 single-nucleotide polymorphisms associated with age at menopause were used to estimate the association with CRC risk using logistic regression in 12,944 women diagnosed with CRC and 10,741 women without CRC from three consortia. Sensitivity analyses were conducted to address pleiotropy and possible confounding by body mass index. RESULTS: Genetic risk scores for age at menarche (odds ratio per year 0.98, 95% confidence interval: 0.95-1.02) and age at menopause (odds ratio 0.98, 95% confidence interval: 0.94-1.01) were not significantly associated with CRC risk. The sensitivity analyses yielded similar results. CONCLUSIONS: Our study does not support a causal relationship between genetic risk scores for age at menarche and age at menopause and CRC risk.
Subject(s)
Colorectal Neoplasms/genetics , Menarche/genetics , Menopause/genetics , Age Factors , Case-Control Studies , Colorectal Neoplasms/epidemiology , Female , Genetic Predisposition to Disease , Humans , Logistic Models , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , RegistriesABSTRACT
BACKGROUND: Genome-wide association studies have identified 55 genetic variants associated with colorectal cancer risk to date. However, potential causal genes and pathways regulated by these risk variants remain to be characterized. Therefore, we performed gene ontology enrichment and pathway analyses to determine if there was an enrichment of genes in proximity to the colorectal cancer risk variants that could further elucidate the probable causal genes and pathways involved in colorectal cancer biology. RESULTS: For the 65 unique genes that either contained, or were immediately neighboring up- and downstream, of these variants there was a significant enrichment for the KEGG pathway, Pathways in Cancer (p-value = 2.67 × 10-5) and an enrichment for multiple biological processes (FDR < 0.05), such as cell junction organization, tissue morphogenesis, regulation of SMAD protein phosphorylation, and odontogenesis identified through Gene Ontology analysis. To identify potential causal genes, we conducted a cis-expression quantitative trait loci (cis-eQTL) analysis using gene expression and genotype data from the Genotype-Tissue Expression (GTEx) Project portal in normal sigmoid (n = 124) and transverse (n = 169) colon tissue. In addition, we also did a cis-eQTL analysis on colorectal tumor tissue (n = 147) from The Cancer Genome Atlas (TCGA). We identified two risk alleles that were significant cis-eQTLs for FADS2 (rs1535) and COLCA1 and 2 (rs3802842) genes in the normal transverse colon tissue and two risk alleles that were significant cis-eQTLs for the CABLES2 (rs2427308) and LIPG (rs7229639) genes in the normal sigmoid colon tissue, but not tumor tissue. CONCLUSIONS: Our data reaffirm the potential to identify an enrichment for biological processes and candidate causal genes based on expression profiles correlated with genetic risk alleles of colorectal cancer, however, the identification of these significant cis-eQTLs is context and tissue specific.
Subject(s)
Colorectal Neoplasms/genetics , Computer Simulation , Genetic Predisposition to Disease/etiology , Genetic Variation , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Alleles , Computational Biology , Gene Ontology , Humans , Organ SpecificityABSTRACT
Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention.
Subject(s)
Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Diet/adverse effects , Adult , Aged , Case-Control Studies , Dietary Fiber/administration & dosage , Female , Fruit , Genome-Wide Association Study/methods , Genotype , Humans , Male , Meat/adverse effects , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk , Risk Factors , Vegetables , Young AdultABSTRACT
Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. Based on our previously developed Set Based gene EnviRonment InterAction test (SBERIA), in this paper we propose a powerful framework for enhanced set-based G × E testing (eSBERIA). The major challenge of signal aggregation within a set is how to tell signals from noise. eSBERIA tackles this challenge by adaptively aggregating the interaction signals within a set weighted by the strength of the marginal and correlation screening signals. eSBERIA then combines the screening-informed aggregate test with a variance component test to account for the residual signals. Additionally, we develop a case-only extension for eSBERIA (coSBERIA) and an existing set-based method, which boosts the power not only by exploiting the G-E independence assumption but also by avoiding the need to specify main effects for a large number of variants in the set. Through extensive simulation, we show that coSBERIA and eSBERIA are considerably more powerful than existing methods within the case-only and the case-control method categories across a wide range of scenarios. We conduct a genome-wide G × E search by applying our methods to Illumina HumanExome Beadchip data of 10,446 colorectal cancer cases and 10,191 controls and identify two novel interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and MINK1 and PTCHD3.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Colorectal Neoplasms/genetics , Gene-Environment Interaction , Protein Serine-Threonine Kinases/genetics , Receptors, Cell Surface/genetics , Colorectal Neoplasms/drug therapy , Genome-Wide Association Study , Humans , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/drug effects , Receptors, Cell Surface/drug effectsABSTRACT
BACKGROUND: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer (CRC) in women. Our aim was to use a genome-wide gene-environment interaction analysis to identify genetic modifiers of CRC risk associated with use of MHT. METHODS: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any MHT, oestrogen-only (E-only) and combined oestrogen-progestogen (E+P) hormone preparations. To test for multiplicative interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case-control logistic regression as primary tests. The Cocktail test was used as secondary test. RESULTS: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and E+P (interaction OR (95% CIs)=0.61 (0.52-0.72), P=4.8 × 10(-9)). The secondary analysis also identified this interaction (Cocktail test OR=0.64 (0.52-0.78), P=1.2 × 10(-5) (alpha threshold=3.1 × 10(-4)). The ORs for association between E+P and CRC risk by rs964293 genotype were as follows: C/C, 0.96 (0.61-1.50); A/C, 0.61 (0.39-0.95) and A/A, 0.40 (0.22-0.73), respectively. CONCLUSIONS: Our results indicate that rs964293 modifies the association between E+P and CRC risk. The variant is located near CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into downstream pathways of CRC etiopathogenesis.
Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Estrogen Replacement Therapy/methods , Estrogens/therapeutic use , Progestins/therapeutic use , Vitamin D3 24-Hydroxylase/genetics , Adenocarcinoma/epidemiology , Aged , Bayes Theorem , Case-Control Studies , Colorectal Neoplasms/epidemiology , Drug Therapy, Combination , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Logistic Models , Middle Aged , Polymorphism, Single Nucleotide , Risk FactorsABSTRACT
Blood-based epigenome-wide association studies that aim at comparing CpG methylation between colorectal cancer (CRC) patients and controls can lead to the discovery of diagnostic or prognostic biomarkers. Numerous confounders can lead to spurious associations. We aimed to see if 5-fluorouracil (5-FU)/leucovorin chemotherapy administered to cases prior to the collection of their blood has an effect on methylation. 304 patients who received treatment and 273 who did not were profiled on the HumanMethylation450 array. Association tests were adjusted for confounders, including proxies for leukocyte cell counts. There were substantial methylation differences between these two groups that vanished once the leukocyte heterogeneity was accounted for. We observed a significant decrease of T cells in the treatment group (CD4+: p=10(-6); CD8+: p=0.036) and significant increase of NK cells (p=0.05) and monocytes (p=0.0006). 5-FU/leucovorin has no effect on global and local blood-based methylation profiles, other than through differences in the leukocyte compositions that the treatment induced.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , CpG Islands/genetics , DNA Methylation/drug effects , Adult , Aged , Colorectal Neoplasms/blood , Epigenesis, Genetic/drug effects , Epigenomics/methods , Female , Fluorouracil/administration & dosage , Humans , Leucovorin/administration & dosage , Leukocyte Count , Leukocytes/drug effects , Leukocytes/metabolism , Linear Models , Male , Middle Aged , SmokingABSTRACT
Although genome-wide association studies (GWAS) have separately identified many genetic susceptibility loci for ulcerative colitis (UC), Crohn's disease (CD) and colorectal cancer (CRC), there has been no large-scale examination for pleiotropy, or shared genetic susceptibility, for these conditions. We used logistic regression modeling to examine the associations of 181 UC and CD susceptibility variants previously identified by GWAS with risk of CRC using data from the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. We also examined associations of significant variants with clinical and molecular characteristics in a subset of the studies. Among 11794 CRC cases and 14190 controls, rs11676348, the susceptibility single nucleotide polymorphism (SNP) for UC, was significantly associated with reduced risk of CRC (P = 7E-05). The multivariate-adjusted odds ratio of CRC with each copy of the T allele was 0.93 (95% CI 0.89-0.96). The association of the SNP with risk of CRC differed according to mucinous histological features (P heterogeneity = 0.008). In addition, the (T) allele was associated with lower risk of tumors with Crohn's-like reaction but not tumors without such immune infiltrate (P heterogeneity = 0.02) and microsatellite instability-high (MSI-high) but not microsatellite stable or MSI-low tumors (P heterogeneity = 0.03). The minor allele (T) in SNP rs11676348, located downstream from CXCR2 that has been implicated in CRC progression, is associated with a lower risk of CRC, particularly tumors with a mucinous component, Crohn's-like reaction and MSI-high. Our findings offer the promise of risk stratification of inflammatory bowel disease patients for complications such as CRC.
Subject(s)
Colitis, Ulcerative/genetics , Colorectal Neoplasms/genetics , Crohn Disease/genetics , Microsatellite Instability , Colitis, Ulcerative/complications , Colitis, Ulcerative/epidemiology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Crohn Disease/complications , Crohn Disease/epidemiology , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Risk , White PeopleABSTRACT
Over 50 loci associated with colorectal cancer (CRC) have been uncovered by genome-wide association studies (GWAS). Identifying additional loci has the potential to help elucidate aspects of the underlying biological processes leading to better understanding of the pathogenesis of the disease. We re-evaluated a GWAS by excluding controls that have family history of CRC or personal history of colorectal polyps, as we hypothesized that their inclusion reduces power to detect associations. This is supported empirically and through simulations. Two-phase GWAS analysis was performed in a total of 16,517 cases and 14,487 controls. We identified rs17094983, a SNP associated with risk of CRC [p = 2.5 × 10(-10); odds ratio estimated by re-including all controls (OR) = 0.87, 95% confidence interval (CI) 0.83-0.91; minor allele frequency (MAF) = 13%]. Results were replicated in samples of African descent (1894 cases and 4703 controls; p = 0.01; OR = 0.86, 95% CI 0.77-0.97; MAF = 16 %). Gene expression data in 195 colon adenocarcinomas and 59 normal colon tissues from two different studies revealed that this locus has genotypes that are associated with RTN1 (Reticulon 1) expression (p = 0.001), a protein-coding gene involved in survival and proliferation of cancer cells which is highly expressed in normal colon tissues but has significantly reduced expression in tumor cells (p = 1.3 × 10(-8)).
Subject(s)
Adenocarcinoma/genetics , Chromosomes, Human, Pair 14/genetics , Colorectal Neoplasms/genetics , Genetic Loci , Genetic Predisposition to Disease , Adenocarcinoma/epidemiology , Aged , Case-Control Studies , Colorectal Neoplasms/epidemiology , Female , Gene Frequency , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk FactorsABSTRACT
IMPORTANCE: Use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. OBJECTIVE: To identify common genetic markers that may confer differential benefit from aspirin or NSAID chemoprevention, we tested gene × environment interactions between regular use of aspirin and/or NSAIDs and single-nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS: Case-control study using data from 5 case-control and 5 cohort studies initiated between 1976 and 2003 across the United States, Canada, Australia, and Germany and including colorectal cancer cases (n=8634) and matched controls (n=8553) ascertained between 1976 and 2011. Participants were all of European descent. EXPOSURES: Genome-wide SNP data and information on regular use of aspirin and/or NSAIDs and other risk factors. MAIN OUTCOMES AND MEASURES: Colorectal cancer. RESULTS: Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (prevalence, 28% vs 38%; odds ratio [OR], 0.69 [95% CI, 0.64-0.74]; P = 6.2 × 10(-28)) compared with nonregular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the MGST1 gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P = 4.6 × 10(-9) for interaction). Aspirin and/or NSAID use was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.61-0.70]; P = 7.7 × 10(-33)) but with a higher risk among those with rare (4%) TA or AA genotypes (prevalence, 35% vs 29%; OR, 1.89 [95% CI, 1.27-2.81]; P = .002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the IL16 gene showed a genome-wide significant interaction with use of aspirin and/or NSAIDs (P = 8.2 × 10(-9) for interaction). Regular use was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.62-0.71]; P = 1.9 × 10(-30)) but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (prevalence, 36% vs 39%; OR, 0.97 [95% CI, 0.78-1.20]; P = .76). CONCLUSIONS AND RELEVANCE: In this genome-wide investigation of gene × environment interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and this association differed according to genetic variation at 2 SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Aspirin/therapeutic use , Colorectal Neoplasms/prevention & control , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Case-Control Studies , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 15 , Colorectal Neoplasms/genetics , Female , Genetic Markers , Genotype , Humans , Male , Risk FactorsABSTRACT
OBJECTIVE: Genome-wide association studies have identified a large number of single nucleotide polymorphisms (SNPs) associated with a wide array of cancer sites. Several of these variants demonstrate associations with multiple cancers, suggesting pleiotropic effects and shared biological mechanisms across some cancers. We hypothesised that SNPs previously associated with other cancers may additionally be associated with colorectal cancer. In a large-scale study, we examined 171 SNPs previously associated with 18 different cancers for their associations with colorectal cancer. DESIGN: We examined 13 338 colorectal cancer cases and 40 967 controls from three consortia: Population Architecture using Genomics and Epidemiology (PAGE), Genetic Epidemiology of Colorectal Cancer (GECCO), and the Colon Cancer Family Registry (CCFR). Study-specific logistic regression results, adjusted for age, sex, principal components of genetic ancestry, and/or study specific factors (as relevant) were combined using fixed-effect meta-analyses to evaluate the association between each SNP and colorectal cancer risk. A Bonferroni-corrected p value of 2.92×10(-4) was used to determine statistical significance of the associations. RESULTS: Two correlated SNPs--rs10090154 and rs4242382--in Region 1 of chromosome 8q24, a prostate cancer susceptibility region, demonstrated statistically significant associations with colorectal cancer risk. The most significant association was observed with rs4242382 (meta-analysis OR=1.12; 95% CI 1.07 to 1.18; p=1.74×10(-5)), which also demonstrated similar associations across racial/ethnic populations and anatomical sub-sites. CONCLUSIONS: This is the first study to clearly demonstrate Region 1 of chromosome 8q24 as a susceptibility locus for colorectal cancer; thus, adding colorectal cancer to the list of cancer sites linked to this particular multicancer risk region at 8q24.
Subject(s)
Colorectal Neoplasms/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Aged , Chromosomes, Human, Pair 8 , Female , Genetic Markers , Genome-Wide Association Study , Genotyping Techniques , Humans , Logistic Models , Male , Middle Aged , Principal Component Analysis , Registries , Risk FactorsABSTRACT
Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. However, partially due to the lack of power, there have been very few replicated G × E findings compared to the success in marginal association studies. The existing G × E testing methods mainly focus on improving the power for individual markers. In this paper, we took a different strategy and proposed a set-based gene-environment interaction test (SBERIA), which can improve the power by reducing the multiple testing burdens and aggregating signals within a set. The major challenge of the signal aggregation within a set is how to tell signals from noise and how to determine the direction of the signals. SBERIA takes advantage of the established correlation screening for G × E to guide the aggregation of genotypes within a marker set. The correlation screening has been shown to be an efficient way of selecting potential G × E candidate SNPs in case-control studies for complex diseases. Importantly, the correlation screening in case-control combined samples is independent of the interaction test. With this desirable feature, SBERIA maintains the correct type I error level and can be easily implemented in a regular logistic regression setting. We showed that SBERIA had higher power than benchmark methods in various simulation scenarios, both for common and rare variants. We also applied SBERIA to real genome-wide association studies (GWAS) data of 10,729 colorectal cancer cases and 13,328 controls and found evidence of interaction between the set of known colorectal cancer susceptibility loci and smoking.
Subject(s)
Colorectal Neoplasms/genetics , Gene-Environment Interaction , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Case-Control Studies , Colorectal Neoplasms/epidemiology , Computer Simulation , Data Interpretation, Statistical , Epidemiologic Methods , Female , Humans , Male , SmokingABSTRACT
A locus on human chromosome 11q23 tagged by marker rs3802842 was associated with colorectal cancer (CRC) in a genome-wide association study; this finding has been replicated in case-control studies worldwide. In order to identify biologic factors at this locus that are related to the etiopathology of CRC, we used microarray-based target selection methods, coupled to next-generation sequencing, to study 103 kb at the 11q23 locus. We genotyped 369 putative variants from 1,030 patients with CRC (cases) and 1,061 individuals without CRC (controls) from the Ontario Familial Colorectal Cancer Registry. Two previously uncharacterized genes, COLCA1 and COLCA2, were found to be co-regulated genes that are transcribed from opposite strands. Expression levels of COLCA1 and COLCA2 transcripts correlate with rs3802842 genotypes. In colon tissues, COLCA1 co-localizes with crystalloid granules of eosinophils and granular organelles of mast cells, neutrophils, macrophages, dendritic cells and differentiated myeloid-derived cell lines. COLCA2 is present in the cytoplasm of normal epithelial, immune and other cell lineages, as well as tumor cells. Tissue microarray analysis demonstrates the association of rs3802842 with lymphocyte density in the lamina propria (p = 0.014) and levels of COLCA1 in the lamina propria (p = 0.00016) and COLCA2 (tumor cells, p = 0.0041 and lamina propria, p = 6 × 10(-5)). In conclusion, genetic, expression and immunohistochemical data implicate COLCA1 and COLCA2 in the pathogenesis of colon cancer. Histologic analyses indicate the involvement of immune pathways.