Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochemistry ; 49(14): 2987-98, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20235548

ABSTRACT

The objective of this review is to enable researchers to use the software package Rosetta for biochemical and biomedicinal studies. We provide a brief review of the six most frequent research problems tackled with Rosetta. For each of these six tasks, we provide a tutorial that illustrates a basic Rosetta protocol. The Rosetta method was originally developed for de novo protein structure prediction and is regularly one of the best performers in the community-wide biennial Critical Assessment of Structure Prediction. Predictions for protein domains with fewer than 125 amino acids regularly have a backbone root-mean-square deviation of better than 5.0 A. More impressively, there are several cases in which Rosetta has been used to predict structures with atomic level accuracy better than 2.5 A. In addition to de novo structure prediction, Rosetta also has methods for molecular docking, homology modeling, determining protein structures from sparse experimental NMR or EPR data, and protein design. Rosetta has been used to accurately design a novel protein structure, predict the structure of protein-protein complexes, design altered specificity protein-protein and protein-DNA interactions, and stabilize proteins and protein complexes. Most recently, Rosetta has been used to solve the X-ray crystallographic phase problem.


Subject(s)
Computer Simulation , Models, Molecular , Proteins/chemistry , Software , Biomedical Research , Crystallography, X-Ray , DNA/chemistry , Knowledge Bases , Multiprotein Complexes , Protein Conformation
2.
Ann Clin Microbiol Antimicrob ; 7: 18, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18817537

ABSTRACT

BACKGROUND: In recent years real-time PCR has become a leading technique for nucleic acid detection and quantification. These assays have the potential to greatly enhance efficiency in the clinical laboratory. Choice of primer and probe sequences is critical for accurate diagnosis in the clinic, yet current primer/probe signature design strategies are limited, and signature evaluation methods are lacking. METHODS: We assessed the quality of a signature by predicting the number of true positive, false positive and false negative hits against all available public sequence data. We found real-time PCR signatures described in recent literature and used a BLAST search based approach to collect all hits to the primer-probe combinations that should be amplified by real-time PCR chemistry. We then compared our hits with the sequences in the NCBI taxonomy tree that the signature was designed to detect. RESULTS: We found that many published signatures have high specificity (almost no false positives) but low sensitivity (high false negative rate). Where high sensitivity is needed, we offer a revised methodology for signature design which may designate that multiple signatures are required to detect all sequenced strains. We use this methodology to produce new signatures that are predicted to have higher sensitivity and specificity. CONCLUSION: We show that current methods for real-time PCR assay design have unacceptably low sensitivities for most clinical applications. Additionally, as new sequence data becomes available, old assays must be reassessed and redesigned. A standard protocol for both generating and assessing the quality of these assays is therefore of great value. Real-time PCR has the capacity to greatly improve clinical diagnostics. The improved assay design and evaluation methods presented herein will expedite adoption of this technique in the clinical lab.


Subject(s)
Molecular Diagnostic Techniques/standards , Polymerase Chain Reaction/methods , DNA Primers/genetics , Humans , Oligonucleotide Probes/genetics , Sensitivity and Specificity
3.
Nat Protoc ; 8(7): 1277-98, 2013.
Article in English | MEDLINE | ID: mdl-23744289

ABSTRACT

Structure-based drug design is frequently used to accelerate the development of small-molecule therapeutics. Although substantial progress has been made in X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of high-resolution structures is limited owing to the frequent inability to crystallize or obtain sufficient NMR restraints for large or flexible proteins. Computational methods can be used to both predict unknown protein structures and model ligand interactions when experimental data are unavailable. This paper describes a comprehensive and detailed protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative models. In the protocol presented here, we review the comparative modeling process, including sequence alignment, threading and loop building. Next, we cover docking a small-molecule ligand into the protein comparative model. In addition, we discuss criteria that can improve ligand docking into comparative models. Finally, and importantly, we present a strategy for assessing model quality. The entire protocol is presented on a single example selected solely for didactic purposes. The results are therefore not representative and do not replace benchmarks published elsewhere. We also provide an additional tutorial so that the user can gain hands-on experience in using Rosetta. The protocol should take 5-7 h, with additional time allocated for computer generation of models.


Subject(s)
Models, Molecular , Molecular Docking Simulation , Protein Conformation , Drug Design , Ligands , Sequence Alignment/methods , Software , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL