Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Appl Crystallogr ; 56(Pt 4): 1242-1251, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555212

ABSTRACT

Complex functional materials play a crucial role in a broad range of energy-related applications and in general for materials science. Revealing the structural mechanisms is challenging due to highly correlated coexisting phases and microstructures, especially for in situ or operando investigations. Since the grain sizes influence the properties, these microstructural features further complicate investigations at synchrotrons due to the limitations of illuminated sample volumes. In this study, it is demonstrated that such complex functional materials with highly correlated coexisting phases can be investigated under in situ conditions with neutron diffraction. For large grain sizes, these experiments are valuable methods to reveal the structural mechanisms. For an example of in situ experiments on barium titanate with an applied electric field, details of the electric-field-induced phase transformation depending on grain size and frequency are revealed. The results uncover the strain mechanisms in barium titanate and elucidate the complex interplay of stresses in relation to grain sizes as well as domain-wall densities and mobilities.

2.
ACS Appl Mater Interfaces ; 14(2): 3027-3037, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985253

ABSTRACT

Dedicated hierarchical structuring of functional ceramics can be used to shift the limits of functionality. This work presents the manufacturing of highly open porous, hierarchically structured barium titanate ceramics with 3-3 connectivity via direct ink writing of capillary suspension-type inks. The pore size of the printed struts (∼1 µm) is combined with a printed mesostructure (∼100 µm). The self-organized particle network, driven by strong capillary forces in the ternary solid/fluid/fluid ink, results in a high strut porosity, and the distinct flow properties of the ink allow for printing high strut size to pore size ratios, resulting in total porosities >60%. These unique and highly porous additive manufactured log-pile structures with closed bottom and top layers enable tailored dielectric and electromechanical coupling, resulting in an energy harvesting figure of merit FOM33 more than four times higher than any documented data for barium titanate. This clearly demonstrates that combining additive manufacturing of capillary suspensions in combination with appropriate sintering allows for creation of complex architected 3D structures with unprecedented properties. This opens up opportunities in a broad variety of applications, including electromechanical energy harvesting, electrode materials for batteries or fuel cells, thermoelectrics, or bone tissue engineering with piezoelectrically stimulated cell growth.

3.
Materials (Basel) ; 13(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120795

ABSTRACT

The electric field response of the lead-free solid solution (1-x)Bi0.53Na0.47TiO3-xBaTiO3 (BNT-BT) in the higher BT composition range with x = 0.12 was investigated using in situ synchrotron X-ray powder diffraction. An introduced Bi-excess non-stoichiometry caused an extended morphotropic phase boundary, leading to an unexpected fully reversible relaxor to ferroelectric (R-FE) phase transformation behavior. By varying the field frequency in a broad range from 10-4 up to 102 Hz, BNT-12BT showed a frequency-dependent gradual suppression of the field induced ferroelectric phase transformation in favor of the relaxor state. A frequency triggered self-heating within the sample was found and the temperature increase exponentially correlated with the field frequency. The effects of a lowered phase transformation temperature TR-FE, caused by the non-stoichiometric composition, were observed in the experimental setup of the freestanding sample. This frequency-dependent investigation of an R-FE phase transformation is unlike previous macroscopic studies, in which heat dissipating metal contacts are used.

SELECTION OF CITATIONS
SEARCH DETAIL