Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancer ; 129(5): 685-696, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36579470

ABSTRACT

PURPOSE: To validate the association between body composition and mortality in men treated with radiation for localized prostate cancer (PCa). Secondarily, to integrate body composition as a factor to classify patients by risk of all-cause mortality. MATERIALS AND METHODS: Participants of NRG/Radiation Therapy Oncology Group (RTOG) 9406 and NRG/RTOG 0126 with archived computed tomography were included. Muscle mass and muscle density were estimated by measuring the area and attenuation of the psoas muscles on a single slice at L4-L5. Bone density was estimated by measuring the attenuation of the vertebral body at mid-L5. Survival analyses, including Cox proportional hazards models, assessed the relationship between body composition and mortality. Recursive partitioning analysis (RPA) was used to create a classification tree to classify participants by risk of death. RESULTS: Data from 2066 men were included in this study. In the final multivariable model, psoas area, comorbidity score, baseline prostate serum antigen, and age were significantly associated with survival. The RPA yielded a classification tree with four prognostic groups determined by age, comorbidity, and psoas area. Notably, the classification among older (≥70 years) men into prognostic groups was determined by psoas area. CONCLUSIONS: This study strongly supports that body composition is related to mortality in men with localized PCa. The inclusion of psoas area in the RPA classification tree suggests that body composition provides additive information to age and comorbidity status for mortality prediction, particularly among older men. More research is needed to determine the clinical impact of body composition on prognostic models in men with PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Aged , Prognosis , Survival Analysis , Body Composition
2.
Am J Respir Cell Mol Biol ; 63(3): 362-373, 2020 09.
Article in English | MEDLINE | ID: mdl-32374624

ABSTRACT

Defective airway mucus clearance is a defining characteristic of cystic fibrosis lung disease, and improvements to current mucolytic strategies are needed. Novel approaches targeting a range of contributing mechanisms are in various stages of preclinical and clinical development. ARINA-1 is a new nebulized product comprised of ascorbic acid, glutathione, and bicarbonate. Using microoptical coherence tomography, we tested the effect of ARINA-1 on central features of mucociliary clearance in F508del/F508del primary human bronchial epithelial cells to assess its potential as a mucoactive therapy in cystic fibrosis. We found that ARINA-1 significantly augmented mucociliary transport rates, both alone and with CFTR (cystic fibrosis transmembrane conductance regulator) modulator therapy, whereas airway hydration and ciliary beating were largely unchanged compared with PBS vehicle control. Analysis of mucus reflectivity and particle-tracking microrheology indicated that ARINA-1 restores mucus clearance by principally reducing mucus layer viscosity. The combination of bicarbonate and glutathione elicited increases in mucociliary transport rate comparable to those seen with ARINA-1, indicating the importance of this interaction to the impact of ARINA-1 on mucus transport; this effect was not recapitulated with bicarbonate alone or bicarbonate combined with ascorbic acid. Assessment of CFTR chloride transport revealed an increase in CFTR-mediated chloride secretion in response to ARINA-1 in CFBE41o- cells expressing wild-type CFTR, driven by CFTR activity stimulation by ascorbate. This response was absent in CFBE41o- F508del cells treated with VX-809 and primary human bronchial epithelial cells, implicating CFTR-independent mechanisms for the effect of ARINA-1 on cystic fibrosis mucus. Together, these studies indicate that ARINA-1 is a novel potential therapy for the treatment of impaired mucus clearance in cystic fibrosis.


Subject(s)
Ascorbic Acid/pharmacology , Bicarbonates/pharmacology , Cystic Fibrosis/drug therapy , Glutathione/pharmacology , Ion Transport/drug effects , Mucociliary Clearance/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Humans
3.
Clin Genitourin Cancer ; 19(1): e37-e40, 2021 02.
Article in English | MEDLINE | ID: mdl-32771333

ABSTRACT

Positron emission tomography using the fluorine-18 (18F) fluciclovine radiotracer has been approved for use in recurrent prostate cancer and is a useful tool for clinical decision making. However, 18F-fluciclovine is not specific for prostate cancer tumor cells, and false-positive results have been reported. In the present study, we have reported our experience with synchronous malignancies identified using 18F-fluciclovine and reviewed other reported cases, with a special emphasis on highlighting the clinical decisions that led to the correct diagnosis.


Subject(s)
Cyclobutanes , Neoplasms, Multiple Primary , Prostatic Neoplasms , Carboxylic Acids , Humans , Male , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals
4.
Sci Transl Med ; 11(504)2019 08 07.
Article in English | MEDLINE | ID: mdl-31391319

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Although impairment of mucociliary clearance contributes to severe morbidity and mortality in people with CF, a clear understanding of the pathophysiology is lacking. This is, in part, due to the absence of clinical imaging techniques capable of capturing CFTR-dependent functional metrics at the cellular level. Here, we report the clinical translation of a 1-µm resolution micro-optical coherence tomography (µOCT) technology to quantitatively characterize the functional microanatomy of human upper airways. Using a minimally invasive intranasal imaging approach, we performed a clinical study on age- and sex-matched CF and control groups. We observed delayed mucociliary transport rate at the cellular level, depletion of periciliary liquid layer, and prevalent loss of ciliation in subjects with CF. Distinctive morphological differences in mucus and various forms of epithelial injury were also revealed by µOCT imaging and had prominent effects on the mucociliary transport apparatus. Elevated mucus reflectance intensity in CF, a proxy for viscosity in situ, had a dominant effect. These results demonstrate the utility of µOCT to determine epithelial function and monitor disease status of CF airways on a per-patient basis, with applicability for other diseases of mucus clearance.


Subject(s)
Cystic Fibrosis/diagnostic imaging , Imaging, Three-Dimensional , Nose/diagnostic imaging , Tomography, Optical Coherence , Case-Control Studies , Cilia/metabolism , Granulocytes/metabolism , Humans , Inflammation/pathology , Mucociliary Clearance , Mucus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL