Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
Nucleic Acids Res ; 49(16): 9574-9593, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34403481

ABSTRACT

Sequence variation in a widespread, recurrent, structured RNA 3D motif, the Sarcin/Ricin (S/R), was studied to address three related questions: First, how do the stabilities of structured RNA 3D motifs, composed of non-Watson-Crick (non-WC) basepairs, compare to WC-paired helices of similar length and sequence? Second, what are the effects on the stabilities of such motifs of isosteric and non-isosteric base substitutions in the non-WC pairs? And third, is there selection for particular base combinations in non-WC basepairs, depending on the temperature regime to which an organism adapts? A survey of large and small subunit rRNAs from organisms adapted to different temperatures revealed the presence of systematic sequence variations at many non-WC paired sites of S/R motifs. UV melting analysis and enzymatic digestion assays of oligonucleotides containing the motif suggest that more stable motifs tend to be more rigid. We further found that the base substitutions at non-Watson-Crick pairing sites can significantly affect the thermodynamic stabilities of S/R motifs and these effects are highly context specific indicating the importance of base-stacking and base-phosphate interactions on motif stability. This study highlights the significance of non-canonical base pairs and their contributions to modulating the stability and flexibility of RNA molecules.


Subject(s)
Nucleotide Motifs/genetics , RNA, Ribosomal/ultrastructure , RNA/ultrastructure , Base Pairing/genetics , Crystallography, X-Ray , Hydrogen Bonding/drug effects , Nucleic Acid Conformation/drug effects , RNA/drug effects , RNA/genetics , RNA, Ribosomal/drug effects , RNA, Ribosomal/genetics , Ricin/pharmacology
3.
J Biol Chem ; 296: 100555, 2021.
Article in English | MEDLINE | ID: mdl-33744291

ABSTRACT

Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.


Subject(s)
Databases, Protein , RNA/chemistry , Computational Biology/methods
4.
Nucleic Acids Res ; 48(6): 3134-3155, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32083649

ABSTRACT

While G/U pairs are present in many RNAs, the lack of molecular studies to characterize the roles of multiple G/U pairs within a single RNA limits our understanding of their biological significance. From known RNA 3D structures, we observed that the probability a G/U will form a Watson-Crick (WC) base pair depends on sequence context. We analyzed 17 G/U pairs in the 359-nucleotide genome of Potato spindle tuber viroid (PSTVd), a circular non-coding RNA that replicates and spreads systemically in host plants. Most putative G/U base pairs were experimentally supported by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). Deep sequencing PSTVd genomes from plants inoculated with a cloned master sequence revealed naturally occurring variants, and showed that G/U pairs are maintained to the same extent as canonical WC base pairs. Comprehensive mutational analysis demonstrated that nearly all G/U pairs are critical for replication and/or systemic spread. Two selected G/U pairs were found to be required for PSTVd entry into, but not for exit from, the host vascular system. This study identifies critical roles for G/U pairs in the survival of an infectious RNA, and increases understanding of structure-based regulation of replication and trafficking of pathogen and cellular RNAs.


Subject(s)
Plant Viruses/genetics , RNA, Untranslated/genetics , RNA, Viral/genetics , Viroids/genetics , Genome, Viral/genetics , Mutation , Nucleic Acid Conformation , Plant Viruses/pathogenicity , Solanum tuberosum/virology , Viroids/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology , Virus Replication/genetics
5.
PLoS Pathog ; 15(10): e1008147, 2019 10.
Article in English | MEDLINE | ID: mdl-31644572

ABSTRACT

Potato spindle tuber viroid (PSTVd) is a circular non-coding RNA of 359 nucleotides that replicates and spreads systemically in host plants, thus all functions required to establish an infection are mediated by sequence and structural elements in the genome. The PSTVd secondary structure contains 26 Watson-Crick base-paired stems and 27 loops. Most of the loops are believed to form three-dimensional (3D) structural motifs through non-Watson-Crick base pairing, base stacking, and other local interactions. Homology-based prediction using the JAR3D online program revealed that loop 27 (nucleotides 177-182) most likely forms a 3D structure similar to the loop of a conserved hairpin located in the 3' untranslated region of histone mRNAs in animal cells. This stem-loop, which is involved in 3'-end maturation, is not found in polyadenylated plant histone mRNAs. Mutagenesis showed that PSTVd genomes containing base substitutions in loop 27 predicted by JAR3D to disrupt the 3D structure were unable to replicate in Nicotiana benthamiana leaves following mechanical rub inoculation, with one exception: a U178G/U179G double mutant was replication-competent and able to spread within the upper epidermis of inoculated leaves, but was confined to this cell layer. Remarkably, direct delivery of the U178G/U179G mutant into the vascular system by needle puncture inoculation allowed it to spread systemically and enter mesophyll cells and epidermal cells of upper leaves. These findings highlight the importance of RNA 3D structure for PSTVd replication and intercellular trafficking and indicate that loop 27 is required for epidermal exit, but not epidermal entry or transit between other cell types. Thus, requirements for RNA trafficking between epidermal and underlying palisade mesophyll cells are unique and directional. Our findings further suggest that 3D structure and RNA-protein interactions constrain RNA sequence evolution, and validate JAR3D as a tool to predict RNA 3D structure.


Subject(s)
Nicotiana/virology , Nucleic Acid Conformation , Nucleotide Motifs/genetics , RNA, Viral/genetics , Solanum tuberosum/virology , Viroids/genetics , Plant Diseases/virology , Solanum tuberosum/genetics , Nicotiana/genetics
7.
Methods ; 103: 99-119, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27125735

ABSTRACT

RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs.


Subject(s)
RNA/chemistry , Animals , Base Pairing , Computer Simulation , Databases, Nucleic Acid , Humans , Models, Molecular , Nucleic Acid Conformation , Nucleotide Motifs , Software
8.
Nucleic Acids Res ; 43(15): 7504-20, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26130723

ABSTRACT

Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson-Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download.


Subject(s)
Models, Statistical , RNA/chemistry , Sequence Analysis, RNA/methods , Base Sequence , Genetic Variation , Markov Chains , Nucleotide Motifs , Sequence Alignment , Software
9.
Nucleic Acids Res ; 42(Database issue): D114-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24185695

ABSTRACT

The Nucleic Acid Database (NDB) (http://ndbserver.rutgers.edu) is a web portal providing access to information about 3D nucleic acid structures and their complexes. In addition to primary data, the NDB contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for the analysis of nucleic acids. A variety of search capabilities are available, as are many different types of reports. This article describes the recent redesign of the NDB Web site with special emphasis on new RNA-derived data and annotations and their implementation and integration into the search capabilities.


Subject(s)
Databases, Nucleic Acid , Nucleic Acid Conformation , DNA/chemistry , Internet , Nucleic Acids/classification , Nucleotide Motifs , RNA/chemistry , Software
10.
RNA ; 19(10): 1327-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23970545

ABSTRACT

The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.


Subject(s)
Algorithms , Nucleic Acid Conformation , Nucleotide Motifs , RNA/chemistry , RNA/classification , Automation , Base Pairing , Models, Molecular , Protein Structure, Tertiary
12.
Nucleic Acids Res ; 41(Web Server issue): W15-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23716643

ABSTRACT

The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.


Subject(s)
RNA/chemistry , Software , Internet , Nucleic Acid Conformation , Nucleotides/analysis , RNA, Ribosomal/chemistry , Sequence Alignment/methods
13.
RNA ; 18(4): 610-25, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22361291

ABSTRACT

We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises.


Subject(s)
Nucleic Acid Conformation , RNA/chemistry , Base Sequence , Dimerization , Models, Molecular , Molecular Sequence Data
14.
Plant Cell ; 23(1): 258-72, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21258006

ABSTRACT

Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.


Subject(s)
Mesophyll Cells/virology , Nicotiana/virology , Plant Viruses/physiology , RNA, Viral/chemistry , Viroids/physiology , Base Sequence , Models, Molecular , Mutation , Nucleic Acid Conformation , Plant Viruses/genetics , Sequence Analysis, RNA , Viroids/genetics
15.
Nucleic Acids Res ; 40(4): 1407-23, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22053086

ABSTRACT

Base triples are recurrent clusters of three RNA nucleobases interacting edge-to-edge by hydrogen bonding. We find that the central base in almost all triples forms base pairs with the other two bases of the triple, providing a natural way to geometrically classify base triples. Given 12 geometric base pair families defined by the Leontis-Westhof nomenclature, combinatoric enumeration predicts 108 potential geometric base triple families. We searched representative atomic-resolution RNA 3D structures and found instances of 68 of the 108 predicted base triple families. Model building suggests that some of the remaining 40 families may be unlikely to form for steric reasons. We developed an on-line resource that provides exemplars of all base triples observed in the structure database and models for unobserved, predicted triples, grouped by triple family, as well as by three-base combination (http://rna.bgsu.edu/Triples). The classification helps to identify recurrent triple motifs that can substitute for each other while conserving RNA 3D structure, with applications in RNA 3D structure prediction and analysis of RNA sequence evolution.


Subject(s)
RNA/chemistry , Base Pairing , Cluster Analysis , Hydrogen Bonding , Models, Molecular , Nucleotide Motifs , RNA, Ribosomal/chemistry
16.
RNA ; 17(7): 1204-12, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21610212

ABSTRACT

Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://snrnasm.bio.unc.edu.


Subject(s)
Chromosome Mapping/methods , Databases, Nucleic Acid , Information Dissemination , Nucleic Acid Conformation , RNA/chemistry , Algorithms , Archives , Base Sequence , Chromosome Mapping/classification , Humans , Molecular Sequence Data , Nucleic Acids/analysis , Nucleic Acids/chemistry , RNA/analysis , Research Design , Validation Studies as Topic
17.
Nucleic Acids Res ; 39(Web Server issue): W50-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21515634

ABSTRACT

WebFR3D is the on-line version of 'Find RNA 3D' (FR3D), a program for annotating atomic-resolution RNA 3D structure files and searching them efficiently to locate and compare RNA 3D structural motifs. WebFR3D provides on-line access to the central features of FR3D, including geometric and symbolic search modes, without need for installing programs or downloading and maintaining 3D structure data locally. In geometric search mode, WebFR3D finds all motifs similar to a user-specified query structure. In symbolic search mode, WebFR3D finds all sets of nucleotides making user-specified interactions. In both modes, users can specify sequence, sequence-continuity, base pairing, base-stacking and other constraints on nucleotides and their interactions. WebFR3D can be used to locate hairpin, internal or junction loops, list all base pairs or other interactions, or find instances of recurrent RNA 3D motifs (such as sarcin-ricin and kink-turn internal loops or T- and GNRA hairpin loops) in any PDB file or across a whole set of 3D structure files. The output page provides facilities for comparing the instances returned by the search by superposition of the 3D structures and the alignment of their sequences annotated with pairwise interactions. WebFR3D is available at http://rna.bgsu.edu/webfr3d.


Subject(s)
RNA/chemistry , Software , Internet , Nucleic Acid Conformation , Nucleotides/chemistry , User-Computer Interface
18.
Nucleic Acids Res ; 39(7): 2903-17, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21138969

ABSTRACT

High affinity and specificity RNA-RNA binding interfaces can be constructed by combining pairs of GNRA loop/loop-receptor interaction motifs. These interactions can be fused using flexible four-way junction motifs to create divalent, self-assembling scaffolding units ('tecto-RNA') that have favorable properties for nanomedicine and other applications. We describe the design and directed assembly of tecto-RNA units ranging from closed, cooperatively assembling ring-shaped complexes of programmable stoichiometries (dimers, trimers and tetramers) to open multimeric structures. The novelty of this work is that tuning of the stoichiometries of self-assembled complexes is achieved by precise positioning of the interaction motifs in the monomer units rather than changing their binding specificities. Structure-probing and transmission electron microscopy studies as well as thermodynamic analysis support formation of closed cooperative complexes that are highly resistant to nuclease digestion. The present designs provide two helical arms per RNA monomer for further functionalization aims.


Subject(s)
RNA/chemistry , Dimerization , Genetic Engineering , Models, Molecular , Nucleic Acid Conformation , Terminology as Topic
19.
Nucleic Acids Res ; 38(18): 6247-64, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20507916

ABSTRACT

We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90-92 (H90-H92) of 23S rRNA; the 3WJ formed by H42-H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3'-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42-H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42-H97 contact.


Subject(s)
RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 5S/chemistry , Escherichia coli/genetics , Haloarcula marismortui/genetics , Molecular Dynamics Simulation , Nucleic Acid Conformation , Phosphates/chemistry , RNA, Archaeal/chemistry , RNA, Bacterial/chemistry
20.
Bioinformatics ; 26(21): 2689-97, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20929913

ABSTRACT

MOTIVATION: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the 'local alignment' graph. RESULTS: The algorithm is implemented in a program suite and web server called 'R3D Align'. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. AVAILABILITY: R3D Align is freely available through a web server http://rna.bgsu.edu/R3DAlign. The MATLAB source code of the program suite is also freely available for download at that location.


Subject(s)
RNA/chemistry , Sequence Alignment/methods , Sequence Analysis, RNA/methods , Software , Algorithms , Nucleic Acid Conformation , RNA, Ribosomal, 16S/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL