Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 149(22): 1729-1748, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38487879

ABSTRACT

BACKGROUND: Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS: We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS: Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS: Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.


Subject(s)
Extracellular Vesicles , Heart Failure , Myocardial Infarction , Animals , Extracellular Vesicles/metabolism , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/etiology , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Mice , Humans , Female , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Cell Proliferation/drug effects
2.
Circulation ; 143(25): 2475-2493, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33793321

ABSTRACT

BACKGROUND: The role of epicardial fat (eFat)-derived extracellular vesicles (EVs) in the pathogenesis of atrial fibrillation (AF) has never been studied. We tested the hypothesis that eFat-EVs transmit proinflammatory, profibrotic, and proarrhythmic molecules that induce atrial myopathy and fibrillation. METHODS: We collected eFat specimens from patients with (n=32) and without AF (n=30) during elective heart surgery. eFat samples were grown as organ cultures, and the culture medium was collected every 2 days. We then isolated and purified eFat-EVs from the culture medium, and analyzed the EV number, size, morphology, specific markers, encapsulated cytokines, proteome, and microRNAs. Next, we evaluated the biological effects of unpurified and purified EVs on atrial mesenchymal stromal cells and endothelial cells in vitro. To establish a causal association between eFat-EVs and vulnerability to AF, we modeled AF in vitro using induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Microscopic examination revealed excessive inflammation, fibrosis, and apoptosis in fresh and cultured eFat tissues. Cultured explants from patients with AF secreted more EVs and harbored greater amounts of proinflammatory and profibrotic cytokines, and profibrotic microRNA, as well, than those without AF. The proteomic analysis confirmed the distinctive profile of purified eFat-EVs from patients with AF. In vitro, purified and unpurified eFat-EVs from patients with AF had a greater effect on proliferation and migration of human mesenchymal stromal cells and endothelial cells, compared with eFat-EVs from patients without AF. Last, whereas eFat-EVs from patients with and without AF shortened the action potential duration of induced pluripotent stem cell-derived cardiomyocytes, only eFat-EVs from patients with AF induced sustained reentry (rotor) in induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: We show, for the first time, a distinctive proinflammatory, profibrotic, and proarrhythmic signature of eFat-EVs from patients with AF. Our findings uncover another pathway by which eFat promotes the development of atrial myopathy and fibrillation.


Subject(s)
Adipose Tissue/pathology , Atrial Fibrillation/etiology , Atrial Fibrillation/pathology , Extracellular Vesicles/pathology , Myocytes, Cardiac/pathology , Pericardium/pathology , Adipose Tissue/metabolism , Aged , Aged, 80 and over , Animals , Atrial Fibrillation/metabolism , Cells, Cultured , Extracellular Vesicles/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Organ Culture Techniques , Pericardium/metabolism , Proteomics/methods , Rats
3.
Basic Res Cardiol ; 117(1): 51, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36239866

ABSTRACT

Understanding how macrophages promote myocardial repair can help create new therapies for infarct repair. We aimed to determine what mechanisms underlie the reparative properties of macrophages. Cytokine arrays revealed that neonatal cardiac macrophages from the injured neonatal heart secreted high amounts of osteopontin (OPN). In vitro, recombinant OPN stimulated cardiac cell outgrowth, cardiomyocyte (CM) cell-cycle re-entry, and CM migration. In addition, OPN induced nuclear translocation of the cytoplasmatic yes-associated protein 1 (YAP1) and upregulated transcriptional factors and cell-cycle genes. Significantly, by blocking the OPN receptor CD44, we eliminated the effects of OPN on CMs. OPN also activated the proliferation and migration of non-CM cells: endothelial cells and cardiac mesenchymal stromal cells in vitro. Notably, the significant role of OPN in myocardial healing was demonstrated by impaired healing in OPN-deficient neonatal hearts. Finally, in the adult mice, a single injection of OPN into the border of the ischemic zone induced CM cell-cycle re-entry, improved scar formation, local and global cardiac function, and LV remodelling 30 days after MI. In summary, we have shown, for the first time, that recombinant OPN activates cell-cycle re-entry in CMs. In addition, recombinant OPN stimulates multiple cardiac cells and improves scar formation, LV remodelling, and regional and global function after MI. Therefore, we propose OPN as a new cell-free therapy to optimize infarct repair.


Subject(s)
Myocardial Infarction , Osteopontin , Animals , Cicatrix/metabolism , Cicatrix/pathology , Endothelial Cells/metabolism , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Osteopontin/pharmacology , YAP-Signaling Proteins
4.
J Mol Cell Cardiol ; 155: 125-137, 2021 06.
Article in English | MEDLINE | ID: mdl-33130150

ABSTRACT

AIMS: One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS: Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS: This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.


Subject(s)
Fibroblasts/metabolism , Gene Expression Regulation , Interleukin-1alpha/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Phosphoproteins/genetics , Ventricular Remodeling/genetics , Animals , Apoptosis/genetics , Biomarkers , Cells, Cultured , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Female , Fluorescent Antibody Technique , Interleukin-1alpha/genetics , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Phosphoproteins/metabolism , Signal Transduction
5.
NMR Biomed ; 33(9): e4359, 2020 09.
Article in English | MEDLINE | ID: mdl-32648316

ABSTRACT

BACKGROUND: In vivo imaging of oxidative stress can facilitate the understanding and treatment of cardiovascular diseases. We evaluated nitroxide-enhanced MRI with 3-carbamoyl-proxyl (3CP) for the detection of myocardial oxidative stress. METHODS: Three mouse models of cardiac oxidative stress were imaged, namely angiotensin II (Ang II) infusion, myocardial infarction (MI), and high-fat high-sucrose (HFHS) diet-induced obesity (DIO). For the Ang II model, mice underwent MRI at baseline and after 7 days of Ang II (n = 8) or saline infusion (n = 8). For the MI model, mice underwent MRI at baseline (n = 10) and at 1 (n = 8), 4 (n = 9), and 21 (n = 8) days after MI. For the HFHS-DIO model, mice underwent MRI at baseline (n = 20) and 18 weeks (n = 13) after diet initiation. The 3CP reduction rate, Kred , computed using a tracer kinetic model, was used as a metric of oxidative stress. Dihydroethidium (DHE) staining of tissue sections was performed on Day 1 after MI. RESULTS: For the Ang II model, Kred was higher after 7 days of Ang II versus other groups (p < 0.05). For the MI model, Kred , in the infarct region was significantly elevated on Days 1 and 4 after MI (p < 0.05), whereas Kred in the noninfarcted region did not change after MI. DHE confirmed elevated oxidative stress in the infarct zone on Day 1 after MI. After 18 weeks of HFHS diet, Kred was higher in mice after diet versus baseline (p < 0.05). CONCLUSIONS: Nitroxide-enhanced MRI noninvasively quantifies tissue oxidative stress as one component of a multiparametric preclinical MRI examination. These methods may facilitate investigations of oxidative stress in cardiovascular disease and related therapies.


Subject(s)
Cardiovascular System/diagnostic imaging , Cardiovascular System/pathology , Magnetic Resonance Imaging , Nitrogen Oxides/chemistry , Oxidative Stress , Adenosine , Angiotensin II , Animals , Cyclic N-Oxides/chemistry , Diet, High-Fat , Dietary Sucrose , Disease Models, Animal , Male , Mice, Inbred C57BL , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Obesity/diagnostic imaging , Obesity/pathology , Perfusion , Pyrrolidines/chemistry
6.
Semin Cell Dev Biol ; 58: 26-33, 2016 10.
Article in English | MEDLINE | ID: mdl-27118656

ABSTRACT

One of the most ambitious goals in modern cardiology is to regenerate the injured myocardium. The human myocardium has poor regenerative power. Thus, significant myocardial injury results in irreversible damage, scar formation, remodeling, and dysfunction. The search for therapies that will improve myocardial regeneration needs a better understanding of the mechanisms of repair and regeneration. While the role of macrophages in inflammation, scar formation, and fibrosis are well defined, their role in myocardial regeneration is less clear. Recent reports have suggested that cardiac macrophages regulate myocardial regeneration in neonatal mice. The present review aims to describe the latest discoveries about the possible role of macrophages in myocardial regeneration. We discuss the promises and difficulties to translate the latest findings into new therapies.


Subject(s)
Heart/physiology , Macrophages/physiology , Regeneration/physiology , Animals , Humans , Inflammation/pathology , Models, Biological
7.
Circulation ; 135(23): 2271-2287, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28356441

ABSTRACT

BACKGROUND: Little is known about the potentially unfavorable effects of mesenchymal stromal cell (MSC) activation on the heart. MSCs can respond to tissue injury by anti- or proinflammatory activation. We aimed to study the potential negative interaction between left ventricular dysfunction (LVD) and MSC activation. METHODS: We isolated MSCs from cardiac and subcutaneous fat tissues of mice with LVD 28 days after myocardial infarction or sham operation. To evaluate the effect of LVD on MSCs, we characterized cardiac MSCs and subcutaneous MSCs in vitro. Subsequently, we injected MSCs or saline into the infarcted myocardium of mice and evaluated LV remodeling and function 28 days after myocardial infarction. To test the hypothesis that toll-like receptor 4 (TLR4) mediates proinflammatory polarization of MSCs, we characterized cardiac MSCs from TLR4-/- and wild-type (WT) mice after inflammatory stimulation in vitro. Next, we transplanted cardiac MSCs from TLR4-/- and WT male mice into the infarcted myocardium of female WT mice and evaluated infarct size, MSC retention, inflammation, remodeling, and function after 7 days. RESULTS: LVD switched cardiac MSCs toward an inflammatory phenotype, with increased secretion of inflammatory cytokines as well as chemokines. The effect of LVD on subcutaneous MSCs was less remarkable. Although transplantation of cardiac MSCs and subcutaneous MSCs from LVD and sham hearts did not improve LV remodeling and function, cardiac MSCs from LVD exacerbated anterior wall thinning 28 days after myocardial infarction. The inflammatory polarization of cardiac MSCs by LVD was mediated by TLR4, as we found less secretion of inflammatory cytokines and higher secretion of anti-inflammatory cytokines from activated cardiac MSCs of TLR4-deficient mice, compared with WT cardiac MSCs. Significantly, TLR4 deficiency preserved the expression of CD47 (don't eat me signal) on cardiac MSCs after both TLR4 stimulation in vitro and transplantation into the infarcted heart. Compared with WT cardiac MSCs and saline, TLR4-/- cardiac MSCs survived in the cardiac tissue and maintained their reparative properties, reduced infarct size, increased scar thickness, and attenuated LV dilatation 7 days after myocardial infarction. CONCLUSIONS: The environment of the failing and infarcted myocardium drives resident and transplanted MSCs toward a proinflammatory phenotype and restricts their survival and reparative effects in a mechanism mediated by TLR4.


Subject(s)
Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Phenotype , Toll-Like Receptor 4/deficiency , Ventricular Dysfunction, Left/pathology , Animals , Cells, Cultured , Female , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic
9.
Cardiovasc Diabetol ; 16(1): 69, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28532406

ABSTRACT

BACKGROUND: Patients with type 2 diabetes present with an accelerated atherosclerotic process. Animal evidence indicates that dipeptidyl peptidase-4 inhibitors (gliptins) have anti-inflammatory and anti-atherosclerotic effects, yet clinical data are scarcely available. DESIGN AND METHODS: A prospective, randomized, open-label study was performed in 60 patients with coronary artery disease (CAD) and type 2 diabetes, who participated in a cardiac rehabilitation program. After a washout period of 3 weeks, patients were randomized in a 2:1 ratio to receive combined vildagliptin/metformin therapy (intervention group: n = 40) vs. metformin alone (control group: n = 20) for a total of 12 weeks. Blinded assessment of interleukin-1ß (IL-1ß, the primary endpoint), hemoglobin A1c (HbA1c), and high sensitivity C reactive protein (hsCRP), were performed at baseline and after 12 weeks. RESULTS: Mean age of study patients was 67 ± 9 years, 75% were males, and baseline HbA1c and inflammatory markers levels were similar between the two groups. At 12 weeks of follow up, levels of IL-1ß, hsCRP, and HbA1c were significantly lower in the intervention group as compared with the control group. There was a continuous elevation of IL-1ß among the control group, which was not observed in the intervention group (49 vs. 4%, respectively; p < 0.001). The hsCRP was lowered by 60% in the vildagliptin/metformin group vs. 23% in the metformin group (p < 0.01). Moreover, a significant relative reduction of the HbA1c was seen in the intervention group (7% reduction, p < 0.03). CONCLUSION: The addition of vildagliptin to metformin treatment in patients with type 2 diabetes and CAD led to a significant suppression of the IL-1ß elevation during follow up. A significant relative reduction of hsCRP and HbA1c in the intervention group was also observed. Trial registration NCT01604213.


Subject(s)
Adamantane/analogs & derivatives , Cardiac Rehabilitation , Coronary Artery Disease/rehabilitation , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Inflammation Mediators/blood , Interleukin-1beta/blood , Metformin/therapeutic use , Nitriles/therapeutic use , Pyrrolidines/therapeutic use , Adamantane/adverse effects , Adamantane/therapeutic use , Aged , Biomarkers/blood , C-Reactive Protein/metabolism , Coronary Artery Disease/blood , Coronary Artery Disease/complications , Coronary Artery Disease/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Drug Therapy, Combination , Female , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/adverse effects , Israel , Male , Metformin/adverse effects , Middle Aged , Nitriles/adverse effects , Prospective Studies , Pyrrolidines/adverse effects , Time Factors , Treatment Outcome , Up-Regulation , Vildagliptin
10.
Eur Heart J ; 37(23): 1789-98, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27055812

ABSTRACT

Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Heart Failure/therapy , Heart/physiology , Myocardial Ischemia/therapy , Cell Tracking/methods , Clinical Trials as Topic , Data Accuracy , Ethics, Medical , Heart Failure/physiopathology , Humans , Myocardial Ischemia/physiopathology , Patient Safety , Patient Selection , Regeneration/physiology , Stem Cell Transplantation/methods , Stroke Volume/physiology , Treatment Outcome
13.
Proc Natl Acad Sci U S A ; 108(5): 1827-32, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21245355

ABSTRACT

Herein we investigated a new strategy for the modulation of cardiac macrophages to a reparative state, at a predetermined time after myocardial infarction (MI), in aim to promote resolution of inflammation and elicit infarct repair. The strategy employed intravenous injections of phosphatidylserine (PS)-presenting liposomes, mimicking the anti-inflammatory effects of apoptotic cells. Following PS-liposome uptake by macrophages in vitro and in vivo, the cells secreted high levels of anti-inflammatory cytokines [transforming growth factor ß (TGFß) and interleukin 10 (IL-10)] and upregulated the expression of the mannose receptor--CD206, concomitant with downregulation of proinflammatory markers, such as tumor necrosis factor α (TNFα) and the surface marker CD86. In a rat model of acute MI, targeting of PS-presenting liposomes to infarct macrophages after injection via the femoral vein was demonstrated by magnetic resonance imaging (MRI). The treatment promoted angiogenesis, the preservation of small scars, and prevented ventricular dilatation and remodeling. This strategy represents a unique and accessible approach for myocardial infarct repair.


Subject(s)
Liposomes , Macrophages/physiology , Myocardial Infarction/pathology , Myocardium/pathology , Phosphatidylserines/administration & dosage , Animals , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunohistochemistry , Interleukin-10/metabolism , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/metabolism
14.
Sci Rep ; 13(1): 4481, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934130

ABSTRACT

Inflammation and fibrosis limit the reparative properties of human mesenchymal stromal cells (hMSCs). We hypothesized that disrupting the toll-like receptor 4 (TLR4) gene would switch hMSCs toward a reparative phenotype and improve the outcome of cell therapy for infarct repair. We developed and optimized an improved electroporation protocol for CRISPR-Cas9 gene editing. This protocol achieved a 68% success rate when applied to isolated hMSCs from the heart and epicardial fat of patients with ischemic heart disease. While cell editing lowered TLR4 expression in hMSCs, it did not affect classical markers of hMSCs, proliferation, and migration rate. Protein mass spectrometry analysis revealed that edited cells secreted fewer proteins involved in inflammation. Analysis of biological processes revealed that TLR4 editing reduced processes linked to inflammation and extracellular organization. Furthermore, edited cells expressed less NF-ƙB and secreted lower amounts of extracellular vesicles and pro-inflammatory and pro-fibrotic cytokines than unedited hMSCs. Cell therapy with both edited and unedited hMSCs improved survival, left ventricular remodeling, and cardiac function after myocardial infarction (MI) in mice. Postmortem histologic analysis revealed clusters of edited cells that survived in the scar tissue 28 days after MI. Morphometric analysis showed that implantation of edited cells increased the area of myocardial islands in the scar tissue, reduced the occurrence of transmural scar, increased scar thickness, and decreased expansion index. We show, for the first time, that CRISPR-Cas9-based disruption of the TLR4-gene reduces pro-inflammatory polarization of hMSCs and improves infarct healing and remodeling in mice. Our results provide a new approach to improving the outcomes of cell therapy for cardiovascular diseases.


Subject(s)
Myocardial Infarction , Toll-Like Receptor 4 , Humans , Mice , Animals , Toll-Like Receptor 4/genetics , Cicatrix/pathology , CRISPR-Cas Systems/genetics , Cells, Cultured , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Pericardium/pathology , Cell- and Tissue-Based Therapy , Inflammation/pathology
15.
Radiology ; 264(2): 428-35, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22723500

ABSTRACT

PURPOSE: To test the hypothesis that magnetic resonance (MR) imaging R1 (R1 = 1/T1) mapping after selectively labeling monocytes with a T1-shortening contrast agent in vivo would enable the quantitative measurement of their spatiotemporal kinetics in the setting of infarct healing. MATERIALS AND METHODS: All procedures were performed in mice and were approved by the institutional committee on animal research. One hundred microliters of dual-labeled liposomes (DLLs) containing gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA)-bis(stearylamide) and DiI dye were used to label monocytes 2 days before myocardial infarction (MI). MI was induced by occlusion of the left anterior descending coronary artery for 1 hour, followed by reperfusion. MR imaging R1 mapping of mouse hearts was performed at baseline on day -3, on day 0 before MI, and on days 1, 4, and 7 after MI. Mice without labeling were used as controls. ΔR1 was calculated as the difference in R1 between mice with labeling and those without labeling. CD68 immunohistochemistry and DiI fluorescence microscopy were used to confirm that labeled monocytes and/or macrophages infiltrated the postinfarct myocardium. Statistical analysis was performed by using two-way analysis of variance and the unpaired two-sample t test. RESULTS: Infarct zone ΔR1 was slightly but nonsignificantly increased on day 1, maximum on day 4 (P < .05 vs all other days), and started to decrease by day 7 (P < .05 vs days -3, 0, and 1) after MI, closely reflecting the time course of monocyte and/or macrophage infiltration of the infarcted myocardium shown by prior histologic studies. Histologic results confirmed the presence and location of DLL-labeled monocytes and/or macrophages in the infarct zone on day 4 after MI. CONCLUSION: R1 mapping after labeling monocytes with T1-shortening DLLs enables the measurement of post-MI monocyte and/or macrophage spatiotemporal kinetics.


Subject(s)
Gadolinium DTPA/pharmacokinetics , Liposomes/pharmacokinetics , Macrophages/metabolism , Magnetic Resonance Imaging, Cine/methods , Monocytes/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Analysis of Variance , Animals , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence
16.
Cardiovasc Diabetol ; 11: 60, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22672501

ABSTRACT

BACKGROUND: Diabetic patients present with an accelerated atherosclerotic process and an increased risk for future cardiovascular events. In addition to the risk imposed by the disease itself, pharmacological treatment adds also a sizable risk, especially if certain classes of antidiabetic drugs are employed. Animal evidence indicates that dipeptidyl peptidase-4 inhibitors have anti-atherosclerotic effects, yet clinical data are scarcely available. DESIGN: We plan to prospectively investigate the effects of dipeptidyl peptidase-4 inhibition with vildagliptin on a number of atherothrombotic markers and adipokines in patients with proven atherosclerosis and type 2 diabetes. The selected markers are: interleukin-6, high sensitivity C reactive protein, interleukin 1-beta, total adiponectin levels, matrix metallo-proteinase 9 and platelet reactivity testing. Sixty eligible patients will be randomized in a 2:1 ratio to vildagliptin/metformin or metformin only treatment, for a 3-month duration treatment. Blood sampling for the proposed investigations will be taken at enrollment and immediately after completion of the study period. DISCUSSION: Demonstrating antiatherothrombotic properties of dipeptidyl peptidase-4 inhibitors on proven markers is of substantial clinical significance. Coupled with their proven good safety profile these findings could translate into a significant clinical benefit.


Subject(s)
Adamantane/analogs & derivatives , Atherosclerosis/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Angiopathies/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Metformin/therapeutic use , Nitriles/therapeutic use , Pyrrolidines/therapeutic use , Research Design , Thrombosis/drug therapy , Adamantane/adverse effects , Adamantane/therapeutic use , Adiponectin/blood , Atherosclerosis/blood , Atherosclerosis/etiology , Biomarkers/blood , C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/blood , Diabetic Angiopathies/etiology , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Drug Combinations , Humans , Hypoglycemic Agents/adverse effects , Inflammation/blood , Inflammation/etiology , Inflammation Mediators/blood , Interleukin-1beta/blood , Interleukin-6/blood , Israel , Matrix Metalloproteinase 9/blood , Metformin/adverse effects , Nitriles/adverse effects , Platelet Function Tests , Prospective Studies , Pyrrolidines/adverse effects , Thrombosis/blood , Thrombosis/etiology , Time Factors , Treatment Outcome , Vildagliptin
17.
Proc Natl Acad Sci U S A ; 106(35): 14990-5, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19706385

ABSTRACT

The recent progress made in the bioengineering of cardiac patches offers a new therapeutic modality for regenerating the myocardium after myocardial infarction (MI). We present here a strategy for the engineering of a cardiac patch with mature vasculature by heterotopic transplantation onto the omentum. The patch was constructed by seeding neonatal cardiac cells with a mixture of prosurvival and angiogenic factors into an alginate scaffold capable of factor binding and sustained release. After 48 h in culture, the patch was vascularized for 7 days on the omentum, then explanted and transplanted onto infarcted rat hearts, 7 days after MI induction. When evaluated 28 days later, the vascularized cardiac patch showed structural and electrical integration into host myocardium. Moreover, the vascularized patch induced thicker scars, prevented further dilatation of the chamber and ventricular dysfunction. Thus, our study provides evidence that grafting prevascularized cardiac patch into infarct can improve cardiac function after MI.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Heart Transplantation/methods , Myocardial Infarction/surgery , Omentum/blood supply , Omentum/surgery , Tissue Engineering/methods , Animals , Cells, Cultured , Electrocardiography , Graft Survival , Male , Microscopy, Electron, Scanning , Myocardial Infarction/physiopathology , Neovascularization, Physiologic , Omentum/cytology , Rats , Rats, Sprague-Dawley , Transplantation, Heterotopic , Treatment Outcome
18.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35316214

ABSTRACT

Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.


Subject(s)
Cardiomyopathies , Mechanistic Target of Rapamycin Complex 1 , Nuclear Proteins , Pregnancy Complications, Cardiovascular , Transcription Factors , Tumor Suppressor Protein p53 , Animals , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Female , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Peripartum Period , Peroxidases/genetics , Peroxidases/metabolism , Pregnancy , Pregnancy Complications, Cardiovascular/metabolism , Pregnancy Complications, Cardiovascular/therapy , RNA, Messenger/metabolism , Transcription Factors/metabolism , Tristetraprolin/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
Sci Rep ; 11(1): 17489, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471180

ABSTRACT

Rapid and sensitive screening tools for SARS-CoV-2 infection are essential to limit the spread of COVID-19 and to properly allocate national resources. Here, we developed a new point-of-care, non-contact thermal imaging tool to detect COVID-19, based on advanced image processing algorithms. We captured thermal images of the backs of individuals with and without COVID-19 using a portable thermal camera that connects directly to smartphones. Our novel image processing algorithms automatically extracted multiple texture and shape features of the thermal images and achieved an area under the curve (AUC) of 0.85 in COVID-19 detection with up to 92% sensitivity. Thermal imaging scores were inversely correlated with clinical variables associated with COVID-19 disease progression. In summary, we show, for the first time, that a hand-held thermal imaging device can be used to detect COVID-19. Non-invasive thermal imaging could be used to screen for COVID-19 in out-of-hospital settings, especially in low-income regions with limited imaging resources.


Subject(s)
COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/instrumentation , Adult , Aged , Algorithms , Area Under Curve , Disease Progression , Female , Humans , Male , Middle Aged , Point-of-Care Systems , Sensitivity and Specificity , Smartphone
20.
Circulation ; 120(25): 2559-66, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-19996019

ABSTRACT

BACKGROUND: The identification and isolation of human cardiac progenitor cells (hCPCs) offer new approaches for myocardial regeneration and repair. Still, the optimal source of human cardiac progenitor cells and the influence of patient characteristics on their number remain unclear. Using a novel method to isolate human cardiac progenitor cells, we aimed to define the optimal source and association between their number and patient characteristics. METHODS AND RESULTS: We developed a novel isolation method that produced viable cells (7 x 10(6)+/-6.53 x 10(5)/g) from various tissue samples obtained during heart surgery or endomyocardial biopsies (113 samples from 94 patients 23 to 80 years of age). The isolated cardiac cells were grown in culture with a stem cell expansion medium. According to fluorescence-activated cell sorting analysis, cultured cells derived from the right atrium generated higher amounts of c-kit(+) (24+/-2.5%) and Islet-1(+) cells (7%) in culture (mean of passages 1, 2, and 3) than did cultured cells from the left atrium (7.3+/-3.5%), right ventricle (4.1+/-1.6%), and left ventricle (9.7+/-3%; P=0.001). According to multivariable analysis, the right atrium as the cell source and female sex were associated with a higher number of c-kit(+) cells. There was no overlap between c-kit(+) and Islet-1 expression. In vitro assays of differentiation into osteoblasts, adipocytes, and myogenic lineage showed that the isolated human cardiac progenitor cells were multipotent. Finally, the cells were transplanted into infarcted myocardium of rats and generated myocardial grafts. CONCLUSIONS: Our results show that the right atrium is the best source for c-kit(+) and Islet-1 progenitors, with higher percentages of c-kit(+) cells being produced by women.


Subject(s)
Heart Atria/cytology , Heart Ventricles/cytology , Multipotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Adult , Aged , Aged, 80 and over , Animals , Biopsy , Cell Differentiation/physiology , Cells, Cultured , Disease Models, Animal , Female , Heart/physiology , Heart Atria/metabolism , Heart Ventricles/metabolism , Homeodomain Proteins/metabolism , Humans , LIM-Homeodomain Proteins , Male , Middle Aged , Multipotent Stem Cells/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/surgery , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Rats , Rats, Nude , Regeneration/physiology , Sex Characteristics , Stem Cell Transplantation , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL