Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Psychiatry ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37369720

ABSTRACT

Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.

2.
PLoS Biol ; 18(4): e3000678, 2020 04.
Article in English | MEDLINE | ID: mdl-32243449

ABSTRACT

Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Networks, Computer
3.
Cereb Cortex ; 31(8): 3610-3621, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33836056

ABSTRACT

The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.


Subject(s)
Brain/growth & development , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/embryology , Malformations of Cortical Development/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/embryology , Adult , Brain/diagnostic imaging , Cerebral Cortex/abnormalities , Female , Fetus/diagnostic imaging , Fetus/metabolism , Filamins/genetics , Gene Expression/genetics , Gene Expression/physiology , Gestational Age , Head , Humans , Magnetic Resonance Imaging , Nerve Net/metabolism , Pregnancy , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcriptome
4.
Neuroimage ; 227: 117622, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33301944

ABSTRACT

The MNI CIVET pipeline for automated extraction of cortical surfaces and evaluation of cortical thickness from in-vivo human MRI has been extended for processing macaque brains. Processing is performed based on the NIMH Macaque Template (NMT), as the reference template, with the anatomical parcellation of the surface following the D99 and CHARM atlases. The modifications needed to adapt CIVET to the macaque brain are detailed. Results have been obtained using CIVET-macaque to process the anatomical scans of the 31 macaques used to generate the NMT and another 95 macaques from the PRIME-DE initiative. It is anticipated that the open usage of CIVET-macaque will promote collaborative efforts in data collection and processing, sharing, and automated analyses from which the non-human primate brain imaging field will advance.


Subject(s)
Brain Cortical Thickness , Cerebral Cortex/diagnostic imaging , Image Processing, Computer-Assisted/methods , Animals , Macaca mulatta , Magnetic Resonance Imaging , Software
5.
Neuroimage ; 226: 117519, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33227425

ABSTRACT

Neuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices. Here we present the PRIMatE Resource Exchange (PRIME-RE), a new collaborative online platform for NHP neuroimaging. PRIME-RE is a dynamic community-driven hub for the exchange of practical knowledge, specialized analytical tools, and open data repositories, specifically related to NHP neuroimaging. PRIME-RE caters to both researchers and developers who are either new to the field, looking to stay abreast of the latest developments, or seeking to collaboratively advance the field .


Subject(s)
Access to Information , Neuroimaging/methods , Online Systems , Primates/anatomy & histology , Primates/physiology , Animals
6.
Cereb Cortex ; 30(9): 5014-5027, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32377664

ABSTRACT

In recent years, replicability of neuroscientific findings, specifically those concerning correlates of morphological properties of gray matter (GM), have been subject of major scrutiny. Use of different processing pipelines and differences in their estimates of the macroscale GM may play an important role in this context. To address this issue, here, we investigated the cortical thickness estimates of three widely used pipelines. Based on analyses in two independent large-scale cohorts, we report high levels of within-pipeline reliability of the absolute cortical thickness-estimates and comparable spatial patterns of cortical thickness-estimates across all pipelines. Within each individual, absolute regional thickness differed between pipelines, indicating that in-vivo thickness measurements are only a proxy of actual thickness of the cortex, which shall only be compared within the same software package and thickness estimation technique. However, at group level, cortical thickness-estimates correlated strongly between pipelines, in most brain regions. The smallest between-pipeline correlations were observed in para-limbic areas and insula. These regions also demonstrated the highest interindividual variability and the lowest reliability of cortical thickness-estimates within each pipeline, suggesting that structural variations within these regions should be interpreted with caution.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Image Processing, Computer-Assisted/methods , Software , Adult , Datasets as Topic , Female , Gray Matter/anatomy & histology , Humans , Magnetic Resonance Imaging , Male
7.
Psychol Med ; 50(11): 1923-1936, 2020 08.
Article in English | MEDLINE | ID: mdl-31456533

ABSTRACT

BACKGROUND: Longitudinal studies of first episode of psychosis (FEP) patients are critical to understanding the dynamic clinical factors influencing functional outcomes; negative symptoms and verbal memory (VM) deficits are two such factors that remain a therapeutic challenge. This study uses white-gray matter contrast at the inner edge of the cortex, in addition to cortical thickness, to probe changes in microstructure and their relation with negative symptoms and possible intersections with verbal memory. METHODS: T1-weighted images and clinical data were collected longitudinally for patients (N = 88) over a two-year period. Cognitive data were also collected at baseline. Relationships between baseline VM (immediate/delayed recall) and rate of change in two negative symptom dimensions, amotivation and expressivity, were assessed at the behavioral level, as well as at the level of brain structure. RESULTS: VM, particularly immediate recall, was significantly and positively associated with a steeper rate of expressivity symptom decline (r = 0.32, q = 0.012). Significant interaction effects between baseline delayed recall and change in expressivity were uncovered in somatomotor regions bilaterally for both white-gray matter contrast and cortical thickness. Furthermore, interaction effects between immediate recall and change in expressivity on cortical thickness rates were uncovered across higher-order regions of the language processing network. CONCLUSIONS: This study shows common neural correlates of language-related brain areas underlying expressivity and VM in FEP, suggesting deficits in these domains may be more linked to speech production rather than general cognitive capacity. Together, white-gray matter contrast and cortical thickness may optimally inform clinical investigations aiming to capture peri-cortical microstructural changes.


Subject(s)
Cerebral Cortex/pathology , Memory Disorders/etiology , Psychotic Disorders/pathology , Psychotic Disorders/psychology , Adult , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Memory Disorders/diagnostic imaging , Mental Recall , Neuropsychological Tests , Verbal Behavior , Young Adult
8.
Cereb Cortex ; 29(12): 5009-5021, 2019 12 17.
Article in English | MEDLINE | ID: mdl-30844050

ABSTRACT

There is growing evidence that psychosis is characterized by brain network abnormalities. Analyzing morphological abnormalities with T1-weighted structural MRI may be limited in discovering the extent of deviations in cortical associations. We assess whether structural associations of either cortical white-gray contrast (WGC) or cortical thickness (CT) allow for a better understanding of brain structural relationships in first episode of psychosis (FEP) patients. Principal component and structural covariance analyses were applied to WGC and CT derived from T1-weighted MRI for 116 patients and 88 controls, to explore sets of brain regions that showed group differences, and associations with symptom severity and cognitive ability in patients. We focused on 2 principal components: one encompassed primary somatomotor regions, which showed trend-like group differences in WGC, and the second included heteromodal cortices. Patients' component scores were related to general psychopathology for WGC, but not CT. Structural covariance analyses with WGC revealed group differences in pairwise correlations across widespread brain regions, mirroring areas derived from PCA. More group differences were uncovered with WGC compared with CT. WGC holds potential as a proxy measure of myelin from commonly acquired T1-weighted MRI and may be sensitive in detecting systems-level aberrations in early psychosis, and relationships with clinical/cognitive profiles.


Subject(s)
Cerebral Cortex/pathology , Image Interpretation, Computer-Assisted/methods , Neuroimaging/methods , Psychotic Disorders/pathology , Adult , Cerebral Cortex/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Psychotic Disorders/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
9.
Cereb Cortex ; 28(7): 2551-2562, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29901791

ABSTRACT

Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.


Subject(s)
Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Anisotropy , Humans
10.
Hum Brain Mapp ; 38(1): 326-338, 2017 01.
Article in English | MEDLINE | ID: mdl-27614005

ABSTRACT

The peri-infarct cortex (PIC) is the site of long-term physiologic changes after ischemic stroke. Traditional methods for delineating the peri-infarct gray matter (GM) have used a volumetric Euclidean distance metric to define its extent around the infarct. This metric has limitations in the case of cortical stroke, i.e., those where ischemia leads to infarction in the cortical GM, because the vascularization of the cerebral cortex follows the complex, folded topology of the cortical surface. Instead, we used a geodesic distance metric along the cortical surface to subdivide the PIC into equidistant rings emanating from the infarct border and compared this new approach to a Euclidean distance metric definition. This was done in 11 patients with [F-18]-Flumazenil ([18-F]-FMZ) positron emission tomography (PET) scans at 2 weeks post-stroke and at 6 month follow-up. FMZ is a PET radiotracer with specific binding to the alpha subunits of the type A γ-aminobutyric acid (GABAA) receptor. Additionally, we used partial-volume correction (PVC) of the PET images to compensate for potential cortical thinning and long-term neuronal loss in follow-up images. The difference in non-displaceable binding potential (BPND ) between the stroke unaffected and affected hemispheres was 35% larger in the geodesic versus the Euclidean peri-infarct models in initial PET images and 48% larger in follow-up PET images. The inter-hemispheric BPND difference was approximately 17-20% larger after PVC when compared to uncorrected PET images. PET studies of peri-infarct GM in cortical strokes should use a geodesic model and include PVC as a preprocessing step. Hum Brain Mapp 38:326-338, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Infarction/etiology , Brain Infarction/pathology , Cerebral Cortex/diagnostic imaging , Nervous System Diseases/pathology , Neurons/pathology , Positron-Emission Tomography , Aged , Aged, 80 and over , Analysis of Variance , Brain Infarction/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Nervous System Diseases/etiology , Retrospective Studies , Stroke/complications
11.
Neuroimage ; 138: 28-42, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27184202

ABSTRACT

Cerebral cortical folding becomes dramatically more complex in the fetal brain during the 3rd trimester of gestation; the process continues in a similar fashion in children who are born prematurely. To quantify this morphological development, it is necessary to extract the interface between gray matter and white matter, which is particularly challenging due to changing tissue contrast during brain maturation. We employed the well-established CIVET pipeline to extract this cortical surface, with point correspondence across subjects, using a surface-based spherical registration. We then developed a variant of the pipeline, called NEOCIVET, that quantified cortical folding using mean curvature and sulcal depth while addressing the well-known problems of poor and temporally-varying gray/white contrast as well as motion artifact in neonatal MRI. NEOCIVET includes: i) a tissue classification technique that analyzed multi-atlas texture patches using the nonlocal mean estimator and subsequently applied a label fusion approach based on a joint probability between templates, ii) neonatal template construction based on age-specific sub-groups, and iii) masking of non-interesting structures using label-fusion approaches. These techniques replaced modules that might be suboptimal for regional analysis of poor-contrast neonatal cortex. The proposed segmentation method showed more accurate results in subjects with various ages and with various degrees of motion compared to state-of-the-art methods. In the analysis of 158 preterm-born neonates, many with multiple scans (n=231; 26-40weeks postmenstrual age at scan), NEOCIVET identified increases in cortical folding over time in numerous cortical regions (mean curvature: +0.003/week; sulcal depth: +0.04mm/week) while folding did not change in major sulci that are known to develop early (corrected p<0.05). The proposed pipeline successfully mapped cortical structural development, supporting current models of cerebral morphogenesis, and furthermore, revealed impairment of cortical folding in extremely preterm newborns relative to relatively late preterm newborns, demonstrating its potential to provide biomarkers of prematurity-related developmental outcome.


Subject(s)
Artifacts , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Algorithms , Humans , Infant, Newborn , Infant, Premature , Motion , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique
12.
Psychiatry Res Neuroimaging ; 330: 111614, 2023 04.
Article in English | MEDLINE | ID: mdl-36812809

ABSTRACT

Few studies have examined the association between conduct problems and cerebral cortical development. Herein, we characterize the association between age-related brain change and conduct problems in a large longitudinal, community-based sample of adolescents. 1,039 participants from the IMAGEN study possessed psychopathology and surface-based morphometric data at study baseline (M = 14.42 years, SD = 0.40; 559 females) and 5-year follow-up. Self-reports of conduct problems were obtained using the Strengths and Difficulties Questionnaire (SDQ). Vertex-level linear mixed effects models were implemented using the Matlab toolbox, SurfStat. To investigate the extent to which cortical thickness maturation was qualified by dimensional measures of conduct problems, we tested for an interaction between age and SDQ Conduct Problems (CP) score. There was no main effect of CP score on cortical thickness; however, a significant "Age by CP" interaction was revealed in bilateral insulae, left inferior frontal gyrus, left rostral anterior cingulate, left posterior cingulate, and bilateral inferior parietal cortices. Across regions, follow-up analysis revealed higher levels of CP were associated with accelerated age-related thinning. Findings were not meaningfully altered when controlling for alcohol use, co-occurring psychopathology, and socioeconomic status. Results may help to further elucidate neurodevelopmental patterns linking adolescent conduct problems with adverse adult outcomes.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Adult , Female , Adolescent , Humans , Magnetic Resonance Imaging/methods , Cerebral Cortex/pathology , Prefrontal Cortex/pathology , Emotions , Parietal Lobe
13.
J Neurosci ; 30(16): 5519-24, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20410105

ABSTRACT

Although the adult brain is considered to be fully developed and stable until senescence when its size steadily decreases, such stability seems at odds with continued human (intellectual) development throughout life. Moreover, although variation in human brain size is highly heritable, we do not know the extent to which genes contribute to individual differences in brain plasticity. In this longitudinal magnetic resonance imaging study in twins, we report considerable thinning of the frontal cortex and thickening of the medial temporal cortex with increasing age and find this change to be heritable and partly related to cognitive ability. Specifically, adults with higher intelligence show attenuated cortical thinning and more pronounced cortical thickening over time than do subjects with average or below average IQ. Genes influencing variability in both intelligence and brain plasticity partly drive these associations. Thus, not only does the brain continue to change well into adulthood, these changes are functionally relevant because they are related to intelligence.


Subject(s)
Brain/physiology , Intelligence/genetics , Neuronal Plasticity/genetics , Twins/genetics , Adult , Brain/pathology , Cerebral Cortex/pathology , Cerebral Cortex/physiology , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Nerve Net/pathology , Nerve Net/physiology , Registries , Twins/psychology , Young Adult
14.
Neuroimage ; 58(1): 16-25, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21704711

ABSTRACT

Regional cortical thickness was evaluated using CIVET processing of 3D T1-weighted images (i) to compare the variation in cortical thickness between 33 participants with fetal alcohol spectrum disorders (FASD) aged 6-30 years (mean age 12.3 years) versus 33 age/sex/hand-matched controls, and (ii) to examine developmental changes in cortical thickness with age from children to young adults in both groups. Significant cortical thinning was found in the participants with FASD in large areas of the bilateral middle frontal lobe, pre- and post- central areas, lateral and inferior temporal and occipital lobes compared to controls. No significant cortical thickness increases were observed for the FASD group. Cortical thinning with age in a linear model was observed in both groups, but the locations were different for each group. FASD participants showed thinning with age in the left middle frontal, bilateral precentral, bilateral precuneus and paracingulate, left inferior occipital and bilateral fusiform gyri; while controls showed decreases with age in the bilateral middle frontal gyrus, right inferior frontal gyrus, bilateral precuneus gyrus, and bilateral occipital gyrus. A battery of cognitive assessments of memory, attention, motor, and verbal abilities was conducted with many of the FASD participants, but no significant correlations were found between these cognitive scores and regional cortical thickness. Non-invasive measurements of cortical thickness in children to young adults with FASD have identified both key regions of cortex that may be more deleteriously affected by prenatal alcohol exposure as well as cortical changes with age that differ from normal developmental thinning.


Subject(s)
Cerebral Cortex/pathology , Fetal Alcohol Spectrum Disorders/pathology , Adolescent , Adult , Aging/psychology , Attention Deficit Disorder with Hyperactivity/pathology , Attention Deficit Disorder with Hyperactivity/psychology , Brain/pathology , Child , Child, Preschool , Cluster Analysis , Cognition/physiology , Cohort Studies , Data Interpretation, Statistical , Diffusion Tensor Imaging , Female , Fetal Alcohol Spectrum Disorders/diagnosis , Fetal Alcohol Spectrum Disorders/psychology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Pregnancy , Young Adult
15.
Neuroimage ; 55(4): 1443-53, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21241809

ABSTRACT

Prevailing psychometric theories of intelligence posit that individual differences in cognitive performance are attributable to three main sources of variance: the general factor of intelligence (g), cognitive ability domains, and specific test requirements and idiosyncrasies. Cortical thickness has been previously associated with g. In the present study, we systematically analyzed associations between cortical thickness and cognitive performance with and without adjusting for the effects of g in a representative sample of children and adolescents (N=207, Mean age=11.8; SD=3.5; Range=6 to 18.3 years). Seven cognitive tests were included in a measurement model that identified three first-order factors (representing cognitive ability domains) and one second-order factor representing g. Residuals of the cognitive ability domain scores were computed to represent g-independent variance for the three domains and seven tests. Cognitive domain and individual test scores as well as residualized scores were regressed against cortical thickness, adjusting for age, gender and a proxy measure of brain volume. g and cognitive domain scores were positively correlated with cortical thickness in very similar areas across the brain. Adjusting for the effects of g eliminated associations of domain and test scores with cortical thickness. Within a psychometric framework, cortical thickness correlates of cognitive performance on complex tasks are well captured by g in this demographically representative sample.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Cognition/physiology , Functional Laterality/physiology , Intelligence/physiology , Magnetic Resonance Imaging , Task Performance and Analysis , Adolescent , Child , Female , Humans , Male
16.
Front Neuroinform ; 15: 665560, 2021.
Article in English | MEDLINE | ID: mdl-34381348

ABSTRACT

In recent years, the replicability of neuroimaging findings has become an important concern to the research community. Neuroimaging pipelines consist of myriad numerical procedures, which can have a cumulative effect on the accuracy of findings. To address this problem, we propose a method for simulating artificial lesions in the brain in order to estimate the sensitivity and specificity of lesion detection, using different automated corticometry pipelines. We have applied this method to different versions of two widely used neuroimaging pipelines (CIVET and FreeSurfer), in terms of coefficients of variation; sensitivity and specificity of detecting lesions in 4 different regions of interest in the cortex, while introducing variations to the lesion size, the blurring kernel used prior to statistical analyses, and different thickness metrics (in CIVET). These variations are tested in a between-subject design (in two random groups, with and without lesions, using T1-weigted MRIs of 152 individuals from the International Consortium of Brain Mapping (ICBM) dataset) and in a within-subject pre-/post-lesion design [using 21 T1-Weighted MRIs of a single adult individual, scanned in the Infant Brain Imaging Study (IBIS)]. The simulation method is sensitive to partial volume effect and lesion size. Comparisons between pipelines illustrate the ability of this method to uncover differences in sensitivity and specificity of lesion detection. We propose that this method be adopted in the workflow of software development and release.

17.
Elife ; 102021 08 25.
Article in English | MEDLINE | ID: mdl-34431476

ABSTRACT

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.


Subject(s)
Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Neuroimaging/methods , Software , Aged , Atlases as Topic , Humans , Magnetic Resonance Imaging , Male
18.
Front Neurosci ; 15: 650082, 2021.
Article in English | MEDLINE | ID: mdl-33815050

ABSTRACT

The human brain grows the most dramatically during the perinatal and early post-natal periods, during which pre-term birth or perinatal injury that may alter brain structure and lead to developmental anomalies. Thus, characterizing cortical thickness of developing brains remains an important goal. However, this task is often complicated by inaccurate cortical surface extraction due to small-size brains. Here, we propose a novel complex framework for the reconstruction of neonatal WM and pial surfaces, accounting for large partial volumes due to small-size brains. The proposed approach relies only on T1-weighted images unlike previous T2-weighted image-based approaches while only T1-weighted images are sometimes available under the different clinical/research setting. Deep neural networks are first introduced to the neonatal magnetic resonance imaging (MRI) pipeline to address the mis-segmentation of brain tissues. Furthermore, this pipeline enhances cortical boundary delineation using combined models of the cerebrospinal fluid (CSF)/GM boundary detection with edge gradient information and a new skeletonization of sulcal folding where no CSF voxels are seen due to the limited resolution. We also proposed a systematic evaluation using three independent datasets comprising 736 pre-term and 97 term neonates. Qualitative assessment for reconstructed cortical surfaces shows that 86.9% are rated as accurate across the three site datasets. In addition, our landmark-based evaluation shows that the mean displacement of the cortical surfaces from the true boundaries was less than a voxel size (0.532 ± 0.035 mm). Evaluating the proposed pipeline (namely NEOCIVET 2.0) shows the robustness and reproducibility across different sites and different age-groups. The mean cortical thickness measured positively correlated with post-menstrual age (PMA) at scan (p < 0.0001); Cingulate cortical areas grew the most rapidly whereas the inferior temporal cortex grew the least rapidly. The range of the cortical thickness measured was biologically congruent (1.3 mm at 28 weeks of PMA to 1.8 mm at term equivalent). Cortical thickness measured on T1 MRI using NEOCIVET 2.0 was compared with that on T2 using the established dHCP pipeline. It was difficult to conclude that either T1 or T2 imaging is more ideal to construct cortical surfaces. NEOCIVET 2.0 has been open to the public through CBRAIN (https://mcin-cnim.ca/technology/cbrain/), a web-based platform for processing brain imaging data.

19.
JAMA Psychiatry ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34132750

ABSTRACT

IMPORTANCE: Animal studies have shown that the adolescent brain is sensitive to disruptions in endocannabinoid signaling, resulting in altered neurodevelopment and lasting behavioral effects. However, few studies have investigated ties between cannabis use and adolescent brain development in humans. OBJECTIVE: To examine the degree to which magnetic resonance (MR) imaging-assessed cerebral cortical thickness development is associated with cannabis use in a longitudinal sample of adolescents. DESIGN, SETTING, AND PARTICIPANTS: Data were obtained from the community-based IMAGEN cohort study, conducted across 8 European sites. Baseline data used in the present study were acquired from March 1, 2008, to December 31, 2011, and follow-up data were acquired from January 1, 2013, to December 31, 2016. A total of 799 IMAGEN participants were identified who reported being cannabis naive at study baseline and had behavioral and neuroimaging data available at baseline and 5-year follow-up. Statistical analysis was performed from October 1, 2019, to August 31, 2020. MAIN OUTCOMES AND MEASURES: Cannabis use was assessed at baseline and 5-year follow-up with the European School Survey Project on Alcohol and Other Drugs. Anatomical MR images were acquired with a 3-dimensional T1-weighted magnetization prepared gradient echo sequence. Quality-controlled native MR images were processed through the CIVET pipeline, version 2.1.0. RESULTS: The study evaluated 1598 MR images from 799 participants (450 female participants [56.3%]; mean [SD] age, 14.4 [0.4] years at baseline and 19.0 [0.7] years at follow-up). At 5-year follow-up, cannabis use (from 0 to >40 uses) was negatively associated with thickness in left prefrontal (peak: t785 = -4.87, cluster size = 1558 vertices; P = 1.10 × 10-6, random field theory cluster corrected) and right prefrontal (peak: t785 = -4.27, cluster size = 1551 vertices; P = 2.81 × 10-5, random field theory cluster corrected) cortices. There were no significant associations between lifetime cannabis use at 5-year follow-up and baseline cortical thickness, suggesting that the observed neuroanatomical differences did not precede initiation of cannabis use. Longitudinal analysis revealed that age-related cortical thinning was qualified by cannabis use in a dose-dependent fashion such that greater use, from baseline to follow-up, was associated with increased thinning in left prefrontal (peak: t815.27 = -4.24, cluster size = 3643 vertices; P = 2.28 × 10-8, random field theory cluster corrected) and right prefrontal (peak: t813.30 = -4.71, cluster size = 2675 vertices; P = 3.72 × 10-8, random field theory cluster corrected) cortices. The spatial pattern of cannabis-related thinning was associated with age-related thinning in this sample (r = 0.540; P < .001), and a positron emission tomography-assessed cannabinoid 1 receptor-binding map derived from a separate sample of participants (r = -0.189; P < .001). Analysis revealed that thinning in right prefrontal cortices, from baseline to follow-up, was associated with attentional impulsiveness at follow-up. CONCLUSIONS AND RELEVANCE: Results suggest that cannabis use during adolescence is associated with altered neurodevelopment, particularly in cortices rich in cannabinoid 1 receptors and undergoing the greatest age-related thickness change in middle to late adolescence.

20.
Hum Brain Mapp ; 31(12): 1967-82, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21086550

ABSTRACT

Multicenter structural MRI studies can have greater statistical power than single-center studies. However, across-center differences in contrast sensitivity, spatial uniformity, etc., may lead to tissue classification or image registration differences that could reduce or wholly offset the enhanced statistical power of multicenter data. Prior work has validated volumetric multicenter MRI, but robust methods for assessing reliability and power of multisite analyses with voxel-based morphometry (VBM) and cortical thickness measurement (CORT) are not yet available. We developed quantitative methods to investigate the reproducibility of VBM and CORT to detect group differences and estimate heritability when MRI scans from different scanners running different acquisition protocols in a multicenter setup are included. The method produces brain maps displaying information such as lowest detectable effect size (or heritability) and effective number of subjects in the multicenter study. We applied the method to a five-site multicenter calibration study using scanners from four different manufacturers, running different acquisition protocols. The reliability maps showed an overall good comparability between the sites, providing a reasonable gain in sensitivity in most parts of the brain. In large parts of the cerebrum and cortex scan pooling improved heritability estimates, with "effective-N" values upto the theoretical maximum. For some areas, "optimal-pool" maps indicated that leaving out a site would give better results. The reliability maps also reveal which brain regions are in any case difficult to measure reliably (e.g., around the thalamus). These tools will facilitate the design and analysis of multisite VBM and CORT studies for detecting group differences and estimating heritability.


Subject(s)
Brain Mapping/standards , Cerebral Cortex/anatomy & histology , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Anthropometry/methods , Brain Mapping/methods , Cerebral Cortex/physiology , Genetic Variation/physiology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Organ Size/physiology
SELECTION OF CITATIONS
SEARCH DETAIL