Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Med Phys ; 34(4): 1244-52, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17500456

ABSTRACT

This study quantifies the dose prediction errors (DPEs) in dynamic IMRT dose calculations resulting from (a) use of an intensity matrix to estimate the multi-leaf collimator (MLC) modulated photon fluence (DPE(IGfluence) instead of an explicit MLC particle transport, and (b) handling of tissue heterogeneities (DPE(hetero)) by superposition/convolution (SC) and pencil beam (PB) dose calculation algorithms. Monte Carlo (MC) computed doses are used as reference standards. Eighteen head-and-neck dynamic MLC IMRT treatment plans are investigated. DPEs are evaluated via comparing the dose received by 98% of the GTV (GTV D 98%), the CTV D 95%, the nodal D 90%, the cord and the brainstem D 02%, the parotid D 50%, the parotid mean dose (D (Mean)), and generalized equivalent uniform doses (gEUDs) for the above structures. For the MC-generated intensity grids, DPE(IGfluence) is within +/- 2.1% for all targets and critical structures. The SC algorithm DPE(hetero) is within +/- 3% for 98.3% of the indices tallied, and within +/- 3.4% for all of the tallied indices. The PB algorithm DPE(hetero) is within +/- 3% for 92% of the tallied indices. Statistical equivalence tests indicate that PB DPE(hetero) requires a +/- 3.6% interval to state equivalence with the MC standard, while the intervals are < 1.5% for SC DPE(hetero) and DPE(IGfluence). Overall, these results indicate that SC and MC IMRT dose calculations which use MC-derived intensity matrices for fluence prediction do not introduce significant dose errors compared with full Monte Carlo dose computations; however, PB algorithms may result in clinically significant dose deviations.


Subject(s)
Algorithms , Artifacts , Models, Biological , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Anisotropy , Body Burden , Computer Simulation , Models, Statistical , Monte Carlo Method , Organ Specificity , Radiotherapy Dosage , Radiotherapy, Conformal , Relative Biological Effectiveness , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Software
2.
Med Phys ; 33(4): 828-39, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16696458

ABSTRACT

A hybrid dose-computation method is designed which accurately accounts for multileaf collimator (MLC)-induced intensity modulation in intensity modulated radiation therapy (IMRT) dose calculations. The method employs Monte Carlo (MC) modeling to determine the fluence modulation caused by the delivery of dynamic or multisegmental (step-and-shoot) MLC fields, and a conventional dose-computation algorithm to estimate the delivered dose to a phantom or a patient. Thus, it determines the IMRT fluence prediction accuracy achievable by analytic methods in the limit that the analytic method includes all details of the MLC leaf transport and scatter. The hybrid method is validated and benchmarked by comparison with in-phantom film dose measurements, as well as dose calculations from two in-house, and two commercial treatment planning system analytic fluence estimation methods. All computation methods utilize the same dose algorithm to calculate dose to a phantom, varying only in the estimation of the MLC modulation of the incident photon energy fluence. Gamma analysis, with respect to measured two-dimensional (2D) dose planes, is used to benchmark each algorithm's performance. The analyzed fields include static and dynamic test patterns, as well as fields from ten DMLC IMRT treatment plans (79 fields) and five SMLC treatment plans (29 fields). The test fields (fully closed MLC, picket fence, sliding windows of different size, and leaf-tip profiles) cover the extremes of MLC usage during IMRT, while the patient fields represent realistic clinical conditions. Of the methods tested, the hybrid method most accurately reproduces measurements. For the hybrid method, 79 of 79 DMLC field calculations have gamma < 1 (3%/3 mm) for more than 95% of the points (per field) while for SMLC fields, 27 of 29 pass the same criteria. The analytic energy fluence estimation methods show inferior pass rates, with 76 of 79 DMLC and 24 of 29 SMLC fields having more than 95% of the test points with gamma < or = 1 (3%/3 mm). Paired one-way ANOVA tests of the gamma analysis results found that the hybrid method better predicts measurements in terms of both the fraction of points with gamma < or = 1 and the average gamma for both 2%/2 mm and 3%/3 mm criteria. These results quantify the enhancement in accuracy in IMRT dose calculations when MC is used to model the MLC field modulation.


Subject(s)
Filtration/instrumentation , Radiometry/methods , Radiotherapy, Conformal/instrumentation , Body Burden , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Filtration/methods , Humans , Models, Biological , Models, Statistical , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Relative Biological Effectiveness , Scattering, Radiation
3.
Int J Radiat Oncol Biol Phys ; 51(1): 227-43, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-11516873

ABSTRACT

PURPOSE: To demonstrate that high-dimensional voxel-to-voxel transformations, derived from continuum mechanics models of the underlying pelvic tissues, can be used to register computed tomography (CT) serial examinations into a single anatomic frame of reference for cumulative dose calculations. METHODS AND MATERIALS: Three patients with locally advanced cervix cancer were treated with CT-compatible intracavitary (ICT) applicators. Each patient underwent five volumetric CT examinations: before initiating treatment, and immediately before and after the first and second ICT insertions, respectively. Each serial examination was rigidly registered to the patient's first ICT examination by aligning the bony anatomy. Detailed nonrigid alignment for organs (or targets) of interest was subsequently achieved by deforming the CT exams as a viscous-fluid, described by the Navier-Stokes equation, until the coincidence with the corresponding targets on CT image was maximized. In cases where ICT insertion induced very large and topologically complex rearrangements of pelvic organs, e.g., extreme uterine canal reorientation following tandem insertion, a viscous-fluid-landmark transformation was used to produce an initial registration. RESULTS: For all three patients, reasonable registrations for organs (or targets) of interest were achieved. Fluid-landmark initialization was required in 4 of the 11 registrations. Relative to the best rigid bony landmark alignment, the viscous-fluid registration resulted in average soft-tissue displacements from 2.8 to 28.1 mm, and improved organ coincidence from the range of 5.2% to 72.2% to the range of 90.6% to 100%. Compared to the viscous-fluid transformation, global registration of bony anatomy mismatched 5% or more of the contoured organ volumes by 15-25 mm. CONCLUSION: Pelvic soft-tissue structures undergo large deformations and displacements during the external-beam and multiple-ICT course of radiation therapy for locally advanced cervix cancer. These changes cannot be modeled by the conventional rigid landmark transformation method. In the current study, we found that the deformable anatomic template registration method, based on continuum-mechanics models of deformation, successfully described these large anatomic shape changes before and after ICT. These promising modeling results indicate that realistic registration of the cumulative dose distribution to the organs (or targets) of interest for radiation therapy of cervical cancers is achievable.


Subject(s)
Algorithms , Brachytherapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Tomography, X-Ray Computed/methods , Uterine Cervical Neoplasms/radiotherapy , Colon, Sigmoid/anatomy & histology , Colon, Sigmoid/diagnostic imaging , Female , Humans , Hysterosalpingography , Models, Theoretical , Pelvis/anatomy & histology , Pelvis/diagnostic imaging , Prospective Studies , Radiotherapy Dosage , Rectum/anatomy & histology , Rectum/diagnostic imaging , Urinary Bladder/anatomy & histology , Urinary Bladder/diagnostic imaging , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Uterus/anatomy & histology , Vagina/anatomy & histology , Vagina/diagnostic imaging
4.
Med Phys ; 29(3): 325-33, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11929015

ABSTRACT

PURPOSE: To present an accurate method to identify the positions and orientations of intracavitary (ICT) brachytherapy applicators imaged in 3D CT scans, in support of Monte Carlo photon-transport simulations, enabling accurate dose modeling in the presence of applicator shielding and interapplicator attenuation. MATERIALS AND METHODS: The method consists of finding the transformation that maximizes the coincidence between the known 3D shapes of each applicator component (colpostats and tandem) with the volume defined by contours of the corresponding surface on each CT slice. We use this technique to localize Fletcher-Suit CT-compatible applicators for three cervix cancer patients using post-implant CT examinations (3 mm slice thickness and separation). Dose distributions in 1-to-1 registration with the underlying CT anatomy are derived from 3D Monte Carlo photon-transport simulations incorporating each applicator's internal geometry (source encapsulation, high-density shields, and applicator body) oriented in relation to the dose matrix according to the measured localization transformations. The precision and accuracy of our localization method are assessed using CT scans, in which the positions and orientations of dense rods and spheres (in a precision-machined phantom) were measured at various orientations relative to the gantry. RESULTS: Using this method, we register 3D Monte Carlo dose calculations directly onto post insertion patient CT studies. Using CT studies of a precisely machined phantom, the absolute accuracy of the method was found to be +/-0.2 mm in plane, and +/-0.3 mm in the axial direction while its precision was +/-0.2 mm in plane, and +/-0.2 mm axially. CONCLUSION: We have developed a novel, and accurate technique to localize intracavitary brachytherapy applicators in 3D CT imaging studies, which supports 3D dose planning involving detailed 3D Monte Carlo dose calculations, modeling source positions, shielding and interapplicator shielding, accurately.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Tomography, X-Ray Computed/methods , Female , Humans , Models, Statistical , Monte Carlo Method , Phantoms, Imaging , Reproducibility of Results , Uterine Cervical Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL