Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38828852

ABSTRACT

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Subject(s)
Animals, Genetically Modified , Chickens , Hedgehog Proteins , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Chickens/genetics , Mice , Biological Evolution , Chick Embryo , Ulna , Gene Expression Regulation, Developmental , Fibula/metabolism , Radius/metabolism , Humans , Extremities/embryology
2.
Cell ; 149(5): 1008-22, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22579044

ABSTRACT

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Subject(s)
DNA Replication , Embryo, Mammalian/metabolism , Ribonuclease H/genetics , Ribonuclease H/metabolism , Ribonucleotides/metabolism , Animals , Chromosomal Instability , DNA-Directed DNA Polymerase/metabolism , Embryonic Stem Cells/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Development ; 146(19)2019 09 30.
Article in English | MEDLINE | ID: mdl-31511252

ABSTRACT

Topologically associating domains (TADs) have been proposed to both guide and constrain enhancer activity. Shh is located within a TAD known to contain all its enhancers. To investigate the importance of chromatin conformation and TAD integrity on developmental gene regulation, we have manipulated the Shh TAD - creating internal deletions, deleting CTCF sites, and deleting and inverting sequences at TAD boundaries. Chromosome conformation capture and fluorescence in situ hybridisation assays were used to investigate the changes in chromatin conformation that result from these manipulations. Our data suggest that these substantial alterations in TAD structure have no readily detectable effect on Shh expression patterns or levels of Shh expression during development - except where enhancers are deleted - and result in no detectable phenotypes. Only in the case of a larger deletion at one TAD boundary could ectopic influence of the Shh limb enhancer be detected on a gene (Mnx1) in the neighbouring TAD. Our data suggests that, contrary to expectations, the developmental regulation of Shh expression is remarkably robust to TAD perturbations.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Animals , Base Pairing/genetics , CCCTC-Binding Factor , Chromatin/metabolism , Embryo, Mammalian/metabolism , Extremities/embryology , Genome , Hedgehog Proteins/metabolism , Mice , Organ Specificity/genetics , Phenotype , Sequence Deletion/genetics
4.
Development ; 143(16): 2994-3001, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27402708

ABSTRACT

Limb-specific Shh expression is regulated by the (∼1 Mb distant) ZRS enhancer. In the mouse, limb bud-restricted spatiotemporal Shh expression occurs from ∼E10 to E11.5 at the distal posterior margin and is essential for correct autopod formation. Here, we have analysed the higher-order chromatin conformation of Shh in expressing and non-expressing tissues, both by fluorescence in situ hybridisation (FISH) and by chromosome conformation capture (5C). Conventional and super-resolution light microscopy identified significantly elevated frequencies of Shh/ZRS colocalisation only in the Shh-expressing regions of the limb bud, in a conformation consistent with enhancer-promoter loop formation. However, in all tissues and at all developmental stages analysed, Shh-ZRS spatial distances were still consistently shorter than those to a neural enhancer located between Shh and ZRS in the genome. 5C identified a topologically associating domain (TAD) over the Shh/ZRS genomic region and enriched interactions between Shh and ZRS throughout E11.5 embryos. Shh/ZRS colocalisation, therefore, correlates with the spatiotemporal domain of limb bud-specific Shh expression, but close Shh and ZRS proximity in the nucleus occurs regardless of whether the gene or enhancer is active. We suggest that this constrained chromatin configuration optimises the opportunity for the active enhancer to locate and instigate the expression of Shh.


Subject(s)
Enhancer Elements, Genetic/genetics , Hedgehog Proteins/metabolism , Animals , Chromosomes/genetics , Chromosomes/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , In Situ Hybridization, Fluorescence , Limb Buds/metabolism , Mice
5.
Development ; 141(20): 3934-43, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25252942

ABSTRACT

Coordinated gene expression controlled by long-distance enhancers is orchestrated by DNA regulatory sequences involving transcription factors and layers of control mechanisms. The Shh gene and well-established regulators are an example of genomic composition in which enhancers reside in a large desert extending into neighbouring genes to control the spatiotemporal pattern of expression. Exploiting the local hopping activity of the Sleeping Beauty transposon, the lacZ reporter gene was dispersed throughout the Shh region to systematically map the genomic features responsible for expression activity. We found that enhancer activities are retained inside a genomic region that corresponds to the topological associated domain (TAD) defined by Hi-C. This domain of approximately 900 kb is in an open conformation over its length and is generally susceptible to all Shh enhancers. Similar to the distal enhancers, an enhancer residing within the Shh second intron activates the reporter gene located at distances of hundreds of kilobases away, suggesting that both proximal and distal enhancers have the capacity to survey the Shh topological domain to recognise potential promoters. The widely expressed Rnf32 gene lying within the Shh domain evades enhancer activities by a process that may be common among other housekeeping genes that reside in large regulatory domains. Finally, the boundaries of the Shh TAD do not represent the absolute expression limits of enhancer activity, as expression activity is lost stepwise at a number of genomic positions at the verges of these domains.


Subject(s)
Gene Expression Regulation, Developmental , Hedgehog Proteins/physiology , Animals , Blastocyst/cytology , DNA Transposable Elements , Enhancer Elements, Genetic , Gene Expression Profiling , Genes, Reporter , Genetic Complementation Test , Hedgehog Proteins/genetics , Heterozygote , Introns , Mice , Mice, Transgenic , Models, Genetic , Promoter Regions, Genetic , Protein Structure, Tertiary , Transgenes
6.
Development ; 141(8): 1715-25, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24715461

ABSTRACT

Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.


Subject(s)
Limb Buds/embryology , Limb Buds/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Base Sequence , Chromosomes, Mammalian/chemistry , DNA Mutational Analysis , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Hindlimb/embryology , Hindlimb/metabolism , In Situ Hybridization, Fluorescence , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nucleic Acid Conformation , Phenotype , Point Mutation/genetics , Sequence Deletion/genetics
7.
Hum Mol Genet ; 22(25): 5083-95, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-23900076

ABSTRACT

The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors that are required for adequate heart formation. Signaling pathways regulated by WT1 that promote heart development have started to be described; however, there is little information on signaling pathways regulated by WT1 that could act in a negative manner. Transcriptome analysis of Wt1KO epicardial cells reveals an unexpected role for WT1 in repressing the expression of interferon-regulated genes that could be involved in a negative regulation of heart morphogenesis. Here, we showed that WT1 is required to repress the expression of the chemokines Ccl5 and Cxcl10 in epicardial cells. We observed an inverse correlation of Wt1 and the expression of Cxcl10 and Ccl5 during epicardium development. Chemokine receptor analyses of hearts from Wt1(gfp/+) mice demonstrate the differential expression of their chemokine receptors in GFP(+) epicardial enriched cells and GFP(-) cells. Functional assays demonstrate that CXCL10 and CCL5 inhibit epicardial cells migration and the proliferation of cardiomyocytes respectively. WT1 regulates the expression levels of Cxcl10 and Ccl5 in epicardial cells directly and indirectly through increasing the levels of IRF7. As epicardial cell reactivation after a myocardial damage is linked with WT1 expression, the present work has potential implications in adult heart repair.


Subject(s)
Chemokine CCL5/biosynthesis , Chemokine CXCL10/biosynthesis , Heart/growth & development , Pericardium/growth & development , WT1 Proteins/genetics , Animals , Chemokine CCL5/genetics , Chemokine CXCL10/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Interferon Regulatory Factor-7/metabolism , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Pericardium/cytology , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/metabolism , Signal Transduction , WT1 Proteins/biosynthesis
8.
Trends Genet ; 28(8): 364-73, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22534646

ABSTRACT

Human hands and feet contain bones of a particular size and shape arranged in a precise pattern. The secreted factor sonic hedgehog (SHH) acts through the conserved hedgehog (Hh) signaling pathway to regulate the digital pattern in the limbs of tetrapods (i.e. land-based vertebrates). Genetic analysis is now uncovering a remarkable set of pathogenetic mutations that alter the Hh pathway, thus compromising both digit number and identity. Several of these are regulatory mutations that have the surprising attribute of misdirecting expression of Hh ligands to ectopic sites in the developing limb buds. In addition, other mutations affect a fundamental structural property of the embryonic cell that is essential to Hh signaling. In this review, we focus on the role that the Hh pathway plays in limb development, and how the many human genetic defects in this pathway are providing clues to the mechanisms that regulate limb development.


Subject(s)
Extremities , Limb Deformities, Congenital/metabolism , Signal Transduction , Animals , Body Patterning , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Limb Deformities, Congenital/genetics
9.
Development ; 139(17): 3157-67, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22872084

ABSTRACT

A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by the activity of distal enhancer elements that drive expression of 5' Hoxd genes, has yet to be fully elucidated. We reveal two levels of chromatin topology that differentiate distal limb A-P HoxD activity. Using both immortalised cell lines derived from posterior and anterior regions of distal E10.5 mouse limb buds, and analysis in E10.5 dissected limb buds themselves, we show that there is a loss of polycomb-catalysed H3K27me3 histone modification and a chromatin decompaction over HoxD in the distal posterior limb compared with anterior. Moreover, we show that the global control region (GCR) long-range enhancer spatially colocalises with the 5' HoxD genomic region specifically in the distal posterior limb. This is consistent with the formation of a chromatin loop between 5' HoxD and the GCR regulatory module at the time and place of distal limb bud development when the GCR participates in initiating Hoxd gene quantitative collinearity and Hoxd13 expression. This is the first example of A-P differences in chromatin compaction and chromatin looping in the development of the mammalian secondary body axis (limb).


Subject(s)
Body Patterning/physiology , Chromatin Assembly and Disassembly/physiology , Extremities/embryology , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , DNA Primers/genetics , Gene Expression Regulation, Developmental/genetics , Histones/metabolism , Image Processing, Computer-Assisted , In Situ Hybridization, Fluorescence , Mice , Microscopy, Fluorescence , Polycomb-Group Proteins , Real-Time Polymerase Chain Reaction , Repressor Proteins/metabolism
10.
Nat Struct Mol Biol ; 29(9): 891-897, 2022 09.
Article in English | MEDLINE | ID: mdl-36097291

ABSTRACT

The regulatory landscapes of developmental genes in mammals can be complex, with enhancers spread over many hundreds of kilobases. It has been suggested that three-dimensional genome organization, particularly topologically associating domains formed by cohesin-mediated loop extrusion, is important for enhancers to act over such large genomic distances. By coupling acute protein degradation with synthetic activation by targeted transcription factor recruitment, here we show that cohesin, but not CTCF, is required for activation of the target gene Shh by distant enhancers in mouse embryonic stem cells. Cohesin is not required for activation directly at the promoter or by an enhancer located closer to the Shh gene. Our findings support the hypothesis that chromatin compaction via cohesin-mediated loop extrusion allows for genes to be activated by enhancers that are located many hundreds of kilobases away in the linear genome and suggests that cohesin is dispensable for enhancers located more proximally.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mammals/genetics , Mice , Transcription Factors/metabolism , Cohesins
11.
Hum Mutat ; 32(12): 1492-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21948517

ABSTRACT

Disruption of the long-range cis-regulation of developmental gene expression is increasingly recognized as a cause of human disease. Here, we report a novel type of long-range cis-regulatory mutation, in which ectopic expression of a gene is driven by an enhancer that is not its own. We have termed this gain of regulatory information as "enhancer adoption." We mapped the breakpoints of a de novo 7q inversion in a child with features of a holoprosencephaly spectrum (HPES) disorder and severe upper limb syndactyly with lower limb synpolydactyly. The HPES plausibly results from the 7q36.3 breakpoint dislocating the sonic hedgehog (SHH) gene from enhancers that are known to drive expression in the early forebrain. However, the limb phenotype cannot be explained by loss of known SHH enhancers. The SHH transcription unit is relocated to 7q22.1, ∼190 kb 3' of a highly conserved noncoding element (HCNE2) within an intron of EMID2. We show that HCNE2 functions as a limb bud enhancer in mouse embryos and drives ectopic expression of Shh in vivo recapitulating the limb phenotype in the child. This developmental genetic mechanism may explain a proportion of the novel or unexplained phenotypes associated with balanced chromosome rearrangements.


Subject(s)
Chromosome Inversion/genetics , Enhancer Elements, Genetic/genetics , Hedgehog Proteins/genetics , Holoprosencephaly/genetics , Syndactyly/genetics , Animals , Child, Preschool , Chromosomes, Human, Pair 7/genetics , Extremities/embryology , Female , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Humans , Limb Buds/embryology , Mice , Mice, Transgenic , Mutation
12.
Front Cell Dev Biol ; 9: 595744, 2021.
Article in English | MEDLINE | ID: mdl-33869166

ABSTRACT

Enhancers that are conserved deep in evolutionary time regulate characteristics held in common across taxonomic classes. Here, deletion of the highly conserved Shh enhancer SBE2 (Shh brain enhancer 2) in mouse markedly reduced Shh expression within the embryonic brain specifically in the rostral diencephalon; however, no abnormal anatomical phenotype was observed. Secondary enhancer activity was subsequently identified which likely mediates low levels of expression. In contrast, when crossing the SBE2 deletion with the Shh null allele, brain and craniofacial development were disrupted; thus, linking SBE2 regulated Shh expression to multiple defects and further enabling the study of the effects of differing levels of Shh on embryogenesis. Development of the hypothalamus, derived from the rostral diencephalon, was disrupted along both the anterior-posterior (AP) and the dorsal-ventral (DV) axes. Expression of DV patterning genes and subsequent neuronal population induction were particularly sensitive to Shh expression levels, demonstrating a novel morphogenic context for Shh. The role of SBE2, which is highlighted by DV gene expression, is to step-up expression of Shh above the minimal activity of the second enhancer, ensuring the necessary levels of Shh in a regional-specific manner. We also show that low Shh levels in the diencephalon disrupted neighbouring craniofacial development, including mediolateral patterning of the bones along the cranial floor and viscerocranium. Thus, SBE2 contributes to hypothalamic morphogenesis and ensures there is coordination with the formation of the adjacent midline cranial bones that subsequently protect the neural tissue.

13.
Nat Commun ; 12(1): 2282, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863876

ABSTRACT

Acheiropodia, congenital limb truncation, is associated with homozygous deletions in the LMBR1 gene around ZRS, an enhancer regulating SHH during limb development. How these deletions lead to this phenotype is unknown. Using whole-genome sequencing, we fine-mapped the acheiropodia-associated region to 12 kb and show that it does not function as an enhancer. CTCF and RAD21 ChIP-seq together with 4C-seq and DNA FISH identify three CTCF sites within the acheiropodia-deleted region that mediate the interaction between the ZRS and the SHH promoter. This interaction is substituted with other CTCF sites centromeric to the ZRS in the disease state. Mouse knockouts of the orthologous 12 kb sequence have no apparent abnormalities, showcasing the challenges in modelling CTCF alterations in animal models due to inherent motif differences between species. Our results show that alterations in CTCF motifs can lead to a Mendelian condition due to altered enhancer-promoter interactions.


Subject(s)
CCCTC-Binding Factor/genetics , Extremities/embryology , Foot Deformities, Congenital/genetics , Gene Expression Regulation, Developmental , Hand Deformities, Congenital/genetics , Animals , Binding Sites/genetics , Chromatin Immunoprecipitation Sequencing , Disease Models, Animal , Embryo, Mammalian , Enhancer Elements, Genetic/genetics , Exons/genetics , Female , Genetic Loci , Genetic Testing , Hedgehog Proteins/genetics , Humans , Introns/genetics , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Promoter Regions, Genetic/genetics , Sequence Deletion , Species Specificity , Whole Genome Sequencing
14.
Hum Mol Genet ; 17(7): 978-85, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18156157

ABSTRACT

Precise spatial and temporal control of developmental genes is crucial during embryogenesis. Regulatory mutations that cause the misexpression of key developmental genes may underlie a number of developmental abnormalities. The congenital abnormality preaxial polydactyly, extra digits, is an example of this novel class of mutations and is caused by ectopic expression of the signalling molecule Sonic Hedgehog (SHH) in the developing limb bud. Mutations in the long-distant, limb-specific cis-regulator for SHH, called the ZRS, are responsible for the ectopic expression which underlies the abnormality. Here, we show that populations of domestic cats which manifest extra digits, including the celebrated polydactylous Hemingway's cats, also contain mutations within the ZRS. The polydactylous cats add significantly to the number of mutations previously reported in mouse and human and to date, all are single nucleotide substitutions. A mouse transgenic assay shows that these single nucleotide substitutions operate as gain-of-function mutations that activate Shh expression at an ectopic embryonic site; and that the sequence context of the mutation is responsible for a variable regulatory output. The plasticity of the regulatory response correlates with both the phenotypic variability and with species differences. The polydactyly mutations define a new genetic mechanism that results in human congenital abnormalities and identifies a pathogenetic mechanism that may underlie other congenital diseases.


Subject(s)
Body Patterning/genetics , Hedgehog Proteins/genetics , Point Mutation , Polydactyly/genetics , Animals , Base Sequence , Cats , Forelimb/abnormalities , Forelimb/embryology , Gene Expression Regulation, Developmental , Genes, Regulator , Hedgehog Proteins/physiology , Humans , Lac Operon , Mice , Mutagenesis, Site-Directed , Pedigree , Polydactyly/embryology , Regulatory Sequences, Nucleic Acid
15.
Hum Mol Genet ; 17(16): 2417-23, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18463159

ABSTRACT

A locus for triphalangeal thumb, variably associated with pre-axial polydactyly, was previously identified in the zone of polarizing activity regulatory sequence (ZRS), a long range limb-specific enhancer of the Sonic Hedgehog (SHH) gene at human chromosome 7q36.3. Here, we demonstrate that a 295T>C variant in the human ZRS, previously thought to represent a neutral polymorphism, acts as a dominant allele with reduced penetrance. We found this variant in three independently ascertained probands from southern England with triphalangeal thumb, demonstrated significant linkage of the phenotype to the variant (LOD = 4.1), and identified a shared microsatellite haplotype around the ZRS, suggesting that the probands share a common ancestor. An individual homozygous for the 295C allele presented with isolated bilateral triphalangeal thumb resembling the heterozygous phenotype, suggesting that the variant is largely dominant to the wild-type allele. As a functional test of the pathogenicity of the 295C allele, we utilized a mutated ZRS construct to demonstrate that it can drive ectopic anterior expression of a reporter gene in the developing mouse forelimb. We conclude that the 295T>C variant is in fact pathogenic and, in southern England, appears to be the most common cause of triphalangeal thumb. Depending on the dispersal of the founding mutation, it may play a wider role in the aetiology of this disorder.


Subject(s)
Enhancer Elements, Genetic , Extremities/growth & development , Gene Expression Regulation, Developmental , Hand Deformities, Congenital/genetics , Hedgehog Proteins/genetics , Polydactyly/genetics , Animals , Base Sequence , Chromosomes, Human, Pair 7/genetics , Cohort Studies , Extremities/embryology , Female , Genetic Linkage , Hand Deformities, Congenital/embryology , Haplotypes , Humans , Male , Mice , Mice, Transgenic , Microsatellite Repeats , Molecular Sequence Data , Mutation , Pedigree , Polydactyly/embryology , Sequence Alignment
16.
Curr Opin Genet Dev ; 15(3): 294-300, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15917205

ABSTRACT

Point mutations in the long-range, limb-specific regulatory element of the SHH gene are responsible for the human limb abnormality called preaxial polydactyly (PPD). Disruptions of regulatory elements in developmental genes are a small but increasingly significant class of mutations responsible for congenital defects. Identifying regulatory elements that might reside hundreds of kilobases from their relevant genes is difficult but rendered possible by the emerging field of comparative genomics. Genetic analysis of PPD highlights the notion that regulatory mutations might generate phenotypes distinct from any of those identified for coding region mutations.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Models, Genetic , Polydactyly/genetics , Animals , Humans , Mutation/genetics , Polydactyly/pathology
17.
Cell Rep ; 20(6): 1396-1408, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28793263

ABSTRACT

Expression of sonic hedgehog (Shh) in the limb bud is regulated by an enhancer called the zone of polarizing activity regulatory sequence (ZRS), which, in evolution, belongs to an ancient group of highly conserved cis regulators found in all classes of vertebrates. Here, we examined the endogenous ZRS in mice, using genome editing to establish the relationship between enhancer composition and embryonic phenotype. We show that enhancer activity is a consolidation of distinct activity domains. Spatial restriction of Shh expression is mediated by a discrete repressor module, whereas levels of gene expression are controlled by large overlapping domains containing varying numbers of HOXD binding sites. The number of HOXD binding sites regulates expression levels incrementally. Substantial portions of conserved sequence are dispensable, indicating the presence of sequence redundancy. We propose a collective model for enhancer activity in which function is an integration of discrete expression activities and redundant components that drive robust expression.


Subject(s)
Conserved Sequence , Enhancer Elements, Genetic , Extremities/embryology , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Animals , Binding Sites , Hedgehog Proteins/chemistry , Hedgehog Proteins/metabolism , Mice , Phenotype , Protein Binding
18.
Open Biol ; 6(11)2016 11.
Article in English | MEDLINE | ID: mdl-27852806

ABSTRACT

The expression of genes with key roles in development is under very tight spatial and temporal control, mediated by enhancers. A classic example of this is the sonic hedgehog gene (Shh), which plays a pivotal role in the proliferation, differentiation and survival of neural progenitor cells both in vivo and in vitro. Shh expression in the brain is tightly controlled by several known enhancers that have been identified through genetic, genomic and functional assays. Using chromatin profiling during the differentiation of embryonic stem cells to neural progenitor cells, here we report the identification of a novel long-range enhancer for Shh-Shh-brain-enhancer-6 (SBE6)-that is located 100 kb upstream of Shh and that is required for the proper induction of Shh expression during this differentiation programme. This element is capable of driving expression in the vertebrate brain. Our study illustrates how a chromatin-focused approach, coupled to in vivo testing, can be used to identify new cell-type specific cis-regulatory elements, and points to yet further complexity in the control of Shh expression during embryonic brain development.


Subject(s)
Brain/embryology , Enhancer Elements, Genetic , Gene Expression Profiling/methods , Hedgehog Proteins/genetics , Human Embryonic Stem Cells/cytology , Animals , Cell Differentiation , Chromatin/genetics , Gene Expression Regulation, Developmental , Humans , Mice , Signal Transduction
19.
Philos Trans R Soc Lond B Biol Sci ; 368(1620): 20120357, 2013.
Article in English | MEDLINE | ID: mdl-23650631

ABSTRACT

Multi-species conserved non-coding elements occur in the vertebrate genome and are clustered in the vicinity of developmentally regulated genes. Many are known to act as cis-regulators of transcription and may reside at long distances from the genes they regulate. However, the relationship of conserved sequence to encoded regulatory information and indeed, the mechanism by which these contribute to long-range transcriptional regulation is not well understood. The ZRS, a highly conserved cis-regulator, is a paradigm for such long-range gene regulation. The ZRS acts over approximately 1 Mb to control spatio-temporal expression of Shh in the limb bud and mutations within it result in a number of limb abnormalities, including polydactyly, tibial hypoplasia and syndactyly. We describe the activity of this developmental regulator and discuss a number of mechanisms by which regulatory mutations in this enhancer function to cause congenital abnormalities.


Subject(s)
Congenital Abnormalities/genetics , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Animals , Binding Sites , Congenital Abnormalities/metabolism , Conserved Sequence , Enhancer Elements, Genetic , Evolution, Molecular , Hedgehog Proteins/genetics , Humans , Limb Deformities, Congenital/genetics , Mutation , Transcription, Genetic
20.
Dev Cell ; 22(2): 459-67, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22340503

ABSTRACT

Sonic hedgehog (Shh) expression during limb development is crucial for specifying the identity and number of digits. The spatial pattern of Shh expression is restricted to a region called the zone of polarizing activity (ZPA), and this expression is controlled from a long distance by the cis-regulator ZRS. Here, members of two groups of ETS transcription factors are shown to act directly at the ZRS mediating a differential effect on Shh, defining its spatial expression pattern. Occupancy at multiple GABPα/ETS1 sites regulates the position of the ZPA boundary, whereas ETV4/ETV5 binding restricts expression outside the ZPA. The ETS gene family is therefore attributed with specifying the boundaries of the classical ZPA. Two point mutations within the ZRS change the profile of ETS binding and activate Shh expression at an ectopic site in the limb bud. These molecular changes define a pathogenetic mechanism that leads to preaxial polydactyly (PPD).


Subject(s)
Embryo, Mammalian/metabolism , Hedgehog Proteins/metabolism , Limb Buds/embryology , Limb Buds/metabolism , Polydactyly/genetics , Proto-Oncogene Proteins c-ets/metabolism , Animals , Blotting, Western , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Electrophoretic Mobility Shift Assay , Embryo, Mammalian/cytology , Enhancer Elements, Genetic/genetics , GA-Binding Protein Transcription Factor/genetics , GA-Binding Protein Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , In Situ Hybridization , Limb Buds/cytology , Mice , Mice, Transgenic , Point Mutation/genetics , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Proteins c-ets/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Regulatory Elements, Transcriptional , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL