Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
FASEB J ; 28(1): 35-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24022403

ABSTRACT

Subjects characterized as cortisol high responders (HRs) consume more calories after stress, but it is unknown whether cortisol responsiveness predicts a propensity for obesity. Female sheep with either high or low cortisol responses to adrenocorticotropin (ACTH) were identified. Body composition was similar in HRs and cortisol low responders (LRs), but the HRs had greater (P<0.01) adiposity than did the LRs (40.5±0.7 vs. 35.8±1.4%) after high-energy feeding, despite comparable food intake. Postprandial thermogenesis in muscle temperature was 0.8 ± 0.08°C higher in the LRs than in the HRs (P<0.01), whereas feeding-induced changes in fat temperature were similar. Leptin and insulin sensitivity were similar in the HRs and LRs. Feeding lowered (P<0.001) the respiratory control ratio in muscle (HRs 9.2±0.8-5.2±1.2; LRs 8.4±0.5-5.2±0.7), indicative of increased uncoupled respiration. Also in muscle, the feeding-induced increases in uncoupling protein (UCP)-3 (fold increase: HRs, 2.4; LRs, 2.0), ryanodine 1 receptor (RyR1; fold increase: HRs 3.1; LRs 2.1), and sarcoendoplasmic reticulum Ca(2+)-dependent ATPase (fold increase: HRs 1.5; LRs 1.6) were equivalent in the HRs and LRs. Sequencing of mitochondrial DNA revealed no haplotypic differences between the 2 groups. We conclude that predisposition to obesity can be predicted by cortisol responsiveness to an ACTH challenge and that the response is due to innate differences in muscle thermogenesis.


Subject(s)
Hydrocortisone/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity/metabolism , Thermogenesis/drug effects , Animals , Blotting, Western , Body Composition/drug effects , Body Weight/drug effects , Energy Metabolism/drug effects , Female , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Leptin/pharmacology , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Real-Time Polymerase Chain Reaction , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL