Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Immunity ; 28(6): 787-98, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18549799

ABSTRACT

The nature of crosspriming immunogens for CD8(+) T cell responses is highly controversial. By using a panel of T cell receptor-like antibodies specific for viral peptides bound to mouse D(b) major histocompatibility complex class I molecules, we show that an exceptional peptide (PA(224-233)) expressed as a viral minigene product formed a sizeable cytosolic pool continuously presented for hours after protein synthesis was inhibited. PA(224-233) pool formation required active cytosolic heat-shock protein 90 but not ER g96 and uniquely enabled crosspriming by this peptide. These findings demonstrate that exceptional class I binding oligopeptides that escape proteolytic degradation are potent crosspriming agents. Thus, the feeble immunogenicity of natural proteasome products in crosspriming can be attributed to their evanescence in donor cells and not an absolute inability of cytosolic oligopeptides to be transferred to and presented by professional antigen-presenting cells.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/metabolism , HSP90 Heat-Shock Proteins/metabolism , Histocompatibility Antigens Class I/immunology , Influenza A virus/immunology , Peptides/immunology , Animals , Antibodies/immunology , Antigens, Viral/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line , Female , HSP90 Heat-Shock Proteins/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Mice , Peptides/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 107(15): 6964-9, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20351281

ABSTRACT

MHC class I molecules function to display peptides generated from cellular and pathogen gene products for immune surveillance by CD8(+) T cells. Cells typically express approximately 100,000 class I molecules, or approximately 1 per 30,000 cellular proteins. Given "one protein, one peptide" representation, immunosurveillance would be heavily biased toward the most abundant cell proteins. Cells use several mechanisms to prevent this, including the predominant use of defective ribosomal products (DRiPs) to generate peptides from nascent proteins and, as we show here, compartmentalization of DRiP peptide generation to prevent competition from abundant cytosolic peptides. This provides an explanation for the exquisite ability of T cells to recognize peptides generated from otherwise undetected gene products.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Histocompatibility Antigens Class I , Animals , Antigen Presentation , Binding, Competitive , Cytosol/metabolism , Flow Cytometry/methods , Genes, MHC Class I , Kinetics , Ligands , Mice , Models, Biological , Monitoring, Immunologic/methods , Peptides/chemistry , Protein Binding
3.
Am J Cancer Res ; 12(1): 315-326, 2022.
Article in English | MEDLINE | ID: mdl-35141020

ABSTRACT

TRAIL-based therapies are of significant clinical interest because of its unique ability to induce apoptosis in cancer cells while sparing normal and untransformed cells. This selective antitumor potential of the TRAIL pathway has been harnessed by development of therapeutics including recombinant (rh)TRAIL and TRAIL-receptor agonist antibodies such as mapatumumab and lexatumumab. While these TRAIL-based therapies have proven successful in preclinical studies and safe in early phase clinical trials, the limited serum half-life has been a hurdle for further clinical development. Here we characterize miR-3132, a novel and first-in class TRAIL-inducing miRNA with potent anti-proliferative and pro-apoptotic effects in cancer cell lines. Initial mechanistic studies indicate that miR-3132 engages the interferon signaling pathway to induce TRAIL and subsequent TRAIL-dependent apoptosis in cancer cell lines. Our data further suggests that the binding of miR-3132 to toll-like receptors could be the upstream pathway for the interferon response. The current study the first report to demonstrate miR-3132's in vitro efficacy and preliminary mechanism of action in cancer cell lines.

4.
J Immunol ; 183(7): 4205-10, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19752220

ABSTRACT

Cross-priming, the activation of naive CD8+ T cells by dendritic cells presenting Ags synthesized by other cells, is believed to play an important role in the generation of antiviral and antitumor responses. The molecular mechanism(s) underlying cross-priming remain poorly defined and highly controversial. GRP94 (gp96), an abundant endoplasmic reticulum chaperone with innate immune-activating capacity, has been widely reported to play a major role in cross-priming. In this study, we show that cells whose expression of GRP94 is silenced via transient or stable transfection with GRP94-directed small interfering RNAs demonstrate no reduction in their abilities to generate class I peptide complexes in cultured cells or to prime antiviral CD8+ T cell responses in vivo. In demonstrating the dispensability of GRP94, our finding points to the importance of alternative mechanisms for generation of class I peptide complexes from endogenous and exogenous Ags and immunogens.


Subject(s)
Antigens, Viral/administration & dosage , Antigens, Viral/immunology , Antiviral Agents/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cross-Priming/immunology , Membrane Glycoproteins/physiology , Animals , Antiviral Agents/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Line , Female , Gene Knockdown Techniques , H-2 Antigens/genetics , H-2 Antigens/immunology , H-2 Antigens/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/immunology , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , RNA, Small Interfering/genetics , Vaccinia virus/genetics , Vaccinia virus/immunology , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology
5.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33765134

ABSTRACT

Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.


Subject(s)
B-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Ectromelia virus/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Virus Diseases/immunology , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Bystander Effect/immunology , Cytotoxicity, Immunologic/genetics , Ectromelia virus/physiology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/virology , Male , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/immunology , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Virus Diseases/virology
6.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: mdl-34324416

ABSTRACT

Mutations in TP53 occur commonly in the majority of human tumors and confer aggressive tumor phenotypes, including metastasis and therapy resistance. CB002 and structural-analogs restore p53 signaling in tumors with mutant-p53 but we find that unlike other xanthines such as caffeine, pentoxifylline, and theophylline, they do not deregulate the G2 checkpoint. Novel CB002-analogs induce pro-apoptotic Noxa protein in an ATF3/4-dependent manner, whereas caffeine, pentoxifylline, and theophylline do not. By contrast to caffeine, CB002-analogs target an S-phase checkpoint associated with increased p-RPA/RPA2, p-ATR, decreased Cyclin A, p-histone H3 expression, and downregulation of essential proteins in DNA-synthesis and DNA-repair. CB002-analog #4 enhances cell death, and decreases Ki-67 in patient-derived tumor-organoids without toxicity to normal human cells. Preliminary in vivo studies demonstrate anti-tumor efficacy in mice. Thus, a novel class of anti-cancer drugs shows the activation of p53 pathway signaling in tumors with mutated p53, and targets an S-phase checkpoint.


Subject(s)
Aniline Compounds/pharmacology , Mutation , Purines/pharmacology , S Phase Cell Cycle Checkpoints/genetics , Signal Transduction/drug effects , Transcriptome , Tumor Suppressor Protein p53/genetics , Aniline Compounds/chemistry , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Damage , Female , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/genetics , Purines/chemistry , Purines/therapeutic use , Random Allocation , Xenograft Model Antitumor Assays
7.
Sci Rep ; 11(1): 20871, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686682

ABSTRACT

A prevalent characteristic of solid tumors is intra-tumoral hypoxia. Hypoxia-inducible factor 1α (HIF1α) predominantly mediates the adaptive response to O2 oscillation and is linked to multiple malignant hallmarks. Here we describe a strategy to robustly target HIF1α by dual inhibition of CDK(s) and heat shock protein 90 (HSP90). We show that CDK1 may contribute to HSP90-mediated HIF1α stabilization. CDK1 knockdown enhances the decrease of HIF1α by HSP90 inhibition. Dual inhibition of CDK1 and HSP90 significantly increases apoptosis and synergistically inhibits cancer cell viability. Similarly, targeting CDK4/6 using FDA-approved inhibitors in combination with HSP90 inhibition shows a class effect on HIF1α inhibition and cancer cell viability suppression not only in colorectal but also in various other cancer types, including Rb-deficient cancer cells. Dual inhibition of CDK4/6 and HSP90 suppresses tumor growth in vivo. In summary, combined targeting of CDK(s) (CDK1 or CDK4/6) and HSP90 remarkably inhibits the expression level of HIF1α and shows promising anti-cancer efficacy with therapeutic potential.


Subject(s)
Cyclin-Dependent Kinases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Proteasome Endopeptidase Complex/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Apoptosis/physiology , Cell Line, Tumor , Cell Survival/physiology , HCT116 Cells , HT29 Cells , Humans , Hypoxia/metabolism
8.
Neoplasia ; 23(3): 304-325, 2021 03.
Article in English | MEDLINE | ID: mdl-33582407

ABSTRACT

A long-term goal in the cancer-field has been to develop strategies for treating p53-mutated tumors. A novel small-molecule, PG3-Oc, restores p53 pathway-signaling in tumor cells with mutant-p53, independently of p53/p73. PG3-Oc partially upregulates the p53-transcriptome (13.7% of public p53 target-gene dataset; 15.2% of in-house dataset) and p53-proteome (18%, HT29; 16%, HCT116-p53-/-). Bioinformatic analysis indicates critical p53-effectors of growth-arrest (p21), apoptosis (PUMA, DR5, Noxa), autophagy (DRAM1), and metastasis-suppression (NDRG1) are induced by PG3-Oc. ERK1/2- and CDK9-kinases are required to upregulate ATF4 by PG3-Oc which restores p53 transcriptomic-targets in cells without functional-p53. PG3-Oc represses MYC (ATF4-independent), and upregulates PUMA (ATF4-dependent) in mediating cell death. With largely nonoverlapping transcriptomes, induced-ATF4 restores p53 transcriptomic targets in drug-treated cells including functionally important mediators such as PUMA and DR5. Our results demonstrate novel p53-independent drug-induced molecular reprogramming involving ERK1/2, CDK9, and ATF4 to restore upregulation of p53 effector genes required for cell death and tumor suppression.


Subject(s)
Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Cyclin-Dependent Kinase 9/metabolism , Mutation , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , CRISPR-Cas Systems , Cell Line, Tumor , Cell Survival/drug effects , Endoplasmic Reticulum Stress , Gene Editing , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Inhibitory Concentration 50 , MAP Kinase Signaling System , Models, Biological
10.
Oncotarget ; 11(42): 3753-3769, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33144917

ABSTRACT

ONC201 was initially identified as an inducer of cell death through the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway. The compound is currently being tested in patients with hematological malignancies and solid tumors, including those of the breast. We investigated strategies to convert the response of breast cancers to ONC201 from anti-proliferative to apoptotic. ONC201 treatment upregulates TRAIL and primes TRAIL-resistant non-triple negative breast cancer (TNBC) cells to undergo cell death through the extrinsic pathway. Remarkably, the addition of exogenous recombinant human TRAIL (rhTRAIL) converts the response of TRAIL-resistant non-TNBC cells to ONC201 from anti-proliferative to apoptotic in a death receptor 5 (DR5)-dependent manner in vitro. Importantly, normal fibroblasts do not undergo apoptosis following rhTRAIL plus ONC201. In vivo, MDA-MB-361 tumor growth rate is significantly reduced following treatment with a combination of ONC201 and rhTRAIL as compared to control tumors. Natural killer (NK) cells which use TRAIL to kill DR5-expressing cancer cells, exhibit greater cytotoxicity against ONC201-treated breast cancer cells compared to controls. rhTRAIL also converts the response of cells from other tumor types to ONC201 from anti-proliferative to apoptotic. A monoclonal DR5-agonistic antibody converts the response of non-TNBC cells to ONC201 from anti-proliferative to apoptotic. Our findings describe a novel therapeutic strategy that potently converts the response of a cancer cell to ONC201 from anti-proliferative to apoptotic. This approach may be clinically relevant and has potential to induce tumor regression of patient tumors with relative resistance to ONC201 monotherapy.

11.
Cell Rep ; 24(1): 142-154, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29972776

ABSTRACT

Circulating natural killer (NK) cells help protect the host from lympho-hematogenous acute viral diseases by rapidly entering draining lymph nodes (dLNs) to curb virus dissemination. Here, we identify a highly choreographed mechanism underlying this process. Using footpad infection with ectromelia virus, a pathogenic DNA virus of mice, we show that TLR9/MyD88 sensing induces NKG2D ligands in virus-infected, skin-derived migratory dendritic cells (mDCs) to induce production of IFN-γ by classical NK cells and other types of group 1 innate lymphoid cells (ILCs) already in dLNs, via NKG2D. Uninfected inflammatory monocytes, also recruited to dLNs by mDCs in a TLR9/MyD88-dependent manner, respond to IFN-γ by secreting CXCL9 for optimal CXCR3-dependent recruitment of circulating NK cells. This work unveils a TLR9/MyD88-dependent mechanism whereby in dLNs, three cell types-mDCs, group 1 ILCs (mostly NK cells), and inflammatory monocytes-coordinate the recruitment of protective circulating NK cells to dLNs.


Subject(s)
Cell Movement , Dendritic Cells/immunology , Ectromelia virus/physiology , Inflammation/pathology , Killer Cells, Natural/immunology , Lymph Nodes/virology , Lymphocytes/immunology , Monocytes/immunology , Animals , Chemokine CXCL9/metabolism , Endothelium/virology , Female , Immunity, Innate , Interferons/metabolism , Ligands , Lymph Nodes/immunology , Male , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, CXCR3/metabolism , Stromal Cells/metabolism , Toll-Like Receptor 9/metabolism
12.
Mol Cancer Res ; 16(5): 754-766, 2018 05.
Article in English | MEDLINE | ID: mdl-29588330

ABSTRACT

Androgen receptor (AR) signaling plays a key role in prostate cancer progression, and androgen deprivation therapy (ADT) is a mainstay clinical treatment regimen for patients with advanced disease. Unfortunately, most prostate cancers eventually become androgen-independent and resistant to ADT with patients progressing to metastatic castration-resistant prostate cancer (mCRPC). Constitutively activated AR variants (AR-V) have emerged as mediators of resistance to AR-targeted therapy and the progression of mCRPC, and they represent an important therapeutic target. Out of at least 15 AR-Vs described thus far, AR-V7 is the most abundant, and its expression correlates with ADT resistance. ONC201/TIC10 is the founding member of the imipridone class of small molecules and has shown anticancer activity in a broad range of tumor types. ONC201 is currently being tested in phase I/II clinical trials for advanced solid tumors, including mCRPC, and hematologic malignancies. There has been promising activity observed in patients in early clinical testing. This study demonstrates preclinical single-agent efficacy of ONC201 using in vitro and in vivo models of prostate cancer. ONC201 has potent antiproliferative and proapoptotic effects in both castration-resistant and -sensitive prostate cancer cells. Furthermore, the data demonstrate that ONC201 downregulates the expression of key drivers of prostate cancer such as AR-V7 and downstream target genes including the clinically used biomarker PSA (KLK3). Finally, the data also provide a preclinical rationale for combination of ONC201 with approved therapeutics for prostate cancer such as enzalutamide, everolimus (mTOR inhibitor), or docetaxel.Implications: The preclinical efficacy of ONC201 as a single agent or in combination, in hormone-sensitive or castration-resistant prostate cancer, suggests the potential for immediate clinical translation. Mol Cancer Res; 16(5); 754-66. ©2018 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Everolimus/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/drug therapy , Receptors, Androgen/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Everolimus/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Imidazoles , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Pyridines , Pyrimidines , Signal Transduction , Transfection
13.
Cancer Biol Ther ; 18(9): 694-704, 2017 Sep 02.
Article in English | MEDLINE | ID: mdl-28886275

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States. We analyzed 26 MSI-High and 558 non-MSI-High CRC tumors. BRCA2 mutations were highly enriched (50%) in MSI-High CRC. Immunohistochemistry showed that BRCA2-mutated MSI-High CRC had high c-MET (64%) expression compared with BRCA-WT (17%). We hypothesized a mechanistic link between BRCA2-deficiency and c-MET overexpression and synergistic interaction between drugs that treat BRCA-deficient tumors (mitomycin C (MMC) or PARP inhibitors) and c-MET inhibitors (crizotinib). We tested CRC cell lines for sensitivity to MMC plus crizotinib or other drug combinations including PARP-inhibitors. Combined treatment of tumor cells with crizotinib and MMC led to increased apoptosis as compared with each drug alone. Additionally, combination treatment with increasing concentrations of both drugs demonstrated a synergistic anti-cancer effect (CI = 0.006-0.74). However, we found no evidence for c-MET upregulation upon effective BRCA2 knockdown in tumor cells -/+DNA damage. Although we found no mechanistic link between BRCA2 deficiency and c-MET overexpression, c-MET is frequently overexpressed in CRC and BRCA2 is mutated especially in MSI-H CRC. The combination of crizotinib with MMC appeared synergistic regardless of MSI or BRCA2 status. Using an in-vivo CRC xenograft model we found reduced tumor growth with combined crizotinib and MMC therapy (p = 0.0088). Our preclinical results support clinical testing of the combination of MMC and crizotinib in advanced CRC. Targeting cell survival mediated by c-MET in combination with targeting DNA repair may be a reasonable strategy for therapy development in CRC or other cancers.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Mitomycin/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Alleles , Animals , Cell Line, Tumor , Cell Survival/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Crizotinib , Disease Models, Animal , Drug Synergism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Silencing , Genes, BRCA2 , Humans , Immunohistochemistry , Mice , Mutation , Proto-Oncogene Proteins c-met , Xenograft Model Antitumor Assays
14.
Cancer Res ; 77(24): 6902-6913, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29061672

ABSTRACT

CDK4/6 targeting is a promising therapeutic strategy under development for various tumor types. In this study, we used computational methods and The Cancer Genome Atlas dataset analysis to identify novel miRNAs that target CDK4/6 and exhibit potential for therapeutic development in colorectal cancer. The 3'UTR of CDK4/6 mRNAs are targeted by a family of miRNAs, which includes miR-6883-5p, miR-149*, miR-6785-5p, and miR-4728-5p. Ectopic expression of miR-6883-5p or miR-149* downregulated CDK4 and CDK6 levels in human colorectal cancer cells. RNA-seq analysis revealed an inverse relationship between the expression of CDK4/6 and miR-149* and intronic miRNA-6883-5p encoding the clock gene PER1 in colorectal cancer patient samples. Restoring expression of miR-6883-5p and miR-149* blocked cell growth leading to G0-G1 phase cell-cycle arrest and apoptosis in colorectal cancer cells. CDK4/6 targeting by miR-6883-5p and miR-149* could only partially explain the observed antiproliferative effects. Notably, both miRNAs synergized with the frontline colorectal cancer chemotherapy drug irinotecan. Further, they resensitized mutant p53-expressing cell lines resistant to 5-fluorouracil. Taken together, our results established the foundations of a candidate miRNA-based theranostic strategy to improve colorectal cancer management. Cancer Res; 77(24); 6902-13. ©2017 AACR.


Subject(s)
Colonic Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , G1 Phase Cell Cycle Checkpoints/genetics , MicroRNAs/physiology , Cell Line, Tumor , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Multigene Family/physiology
15.
Oncotarget ; 8(25): 39945-39962, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28591715

ABSTRACT

Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P < 0.0001) in BRCA2. Of 1104 profiled CRCs from a second cohort (COSMIC), MSH2/MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P < 0.0000001). BRCA2 mutations in MSH2/MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P < 0.0000001). Approximately 15% of EGFR mutations found may be actionable through TKI therapy, including N700D, G719D, T725M, T790M, and E884K. NTRK gene mutations were identified in MSH2/MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.


Subject(s)
BRCA2 Protein/genetics , Colorectal Neoplasms/genetics , ErbB Receptors/genetics , Mutation , Receptor, trkA/genetics , Receptor, trkB/genetics , Receptor, trkC/genetics , BRCA2 Protein/chemistry , Cohort Studies , DNA Mismatch Repair/genetics , ErbB Receptors/chemistry , Gene Frequency , Humans , Microsatellite Instability , Models, Molecular , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Protein Domains , Receptor, trkA/chemistry , Receptor, trkB/chemistry , Receptor, trkC/chemistry
16.
Cell Cycle ; 16(19): 1790-1799, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28489985

ABSTRACT

Anti-cancer small molecule ONC201 upregulates the integrated stress response (ISR) and acts as a dual inactivator of Akt/ERK, leading to TRAIL gene activation. ONC201 is under investigation in multiple clinical trials to treat patients with cancer. Given the unique imipridone core chemical structure of ONC201, we synthesized a series of analogs to identify additional compounds with distinct therapeutic properties. Several imipridones with a broad range of in vitro potencies were identified in an exploration of chemical derivatives. Based on in vitro potency in human cancer cell lines and lack of toxicity to normal human fibroblasts, imipridones ONC206 and ONC212 were prioritized for further study. Both analogs inhibited colony formation, and induced apoptosis and downstream signaling that involves the integrated stress response and Akt/ERK, similar to ONC201. Compared to ONC201, ONC206 demonstrated improved inhibition of cell migration while ONC212 exhibited rapid kinetics of activity. ONC212 was further tested in >1000 human cancer cell lines in vitro and evaluated for safety and anti-tumor efficacy in vivo. ONC212 exhibited broad-spectrum efficacy at nanomolar concentrations across solid tumors and hematological malignancies. Skin cancer emerged as a tumor type with improved efficacy relative to ONC201. Orally administered ONC212 displayed potent anti-tumor effects in vivo, a broad therapeutic window and a favorable PK profile. ONC212 was efficacious in vivo in BRAF V600E melanoma models that are less sensitive to ONC201. Based on these findings, ONC212 warrants further development as a drug candidate. It is clear that therapeutic utility extends beyond ONC201 to include additional imipridones.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds, 4 or More Rings/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Imidazoles , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Organ Specificity , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyridines , Pyrimidines , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
17.
Oncotarget ; 8(40): 66747-66757, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28977993

ABSTRACT

We have developed 3D-tumoroids and tumor slice in vitro culture systems from surgical tumor specimens derived from patients with colorectal cancer (CRC) or lung cancer to evaluate immune cell populations infiltrating cultured tissues. The system incorporates patient's peripherally and tumor-derived immune cells into tumoroid in vitro cultures to evaluate the ability of the culture to mimic an immunosuppressive tumor microenvironment (ITM). This system enables analysis of tumor response to standard therapy within weeks of surgical resection. Here we show that tumoroid cultures from a CRC patient are highly sensitive to the thymidylate synthase inhibitor 5-fluorouracil (adrucil) but less sensitive to the combination of nucleoside analog trifluridine and thymidine phosphorylase inhibitor tipiracil (Lonsurf). Moreover, re-introduction of isolated immune cells derived from surrounding and infiltrating tumor tissue as well as CD45+ tumor infiltrating hematopoietic cells displayed prolonged (>10 days) survival in co-culture. Established tumor slice cultures were found to contain both an outer epithelial and inner stromal cell compartment mimicking tumor structure in vivo. Collectively, these data suggest that, 3D-tumoroid and slice culture assays may provide a feasible in vitro approach to assess efficacy of novel therapeutics in the context of heterogeneous tumor-associated cell types including immune and non-transformed stromal cells. In addition, delineating the impact of therapeutics on immune cells, and cell types involved in therapeutic resistance mechanisms may be possible in general or for patient-specific responses.

18.
Oncotarget ; 8(47): 81776-81793, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137221

ABSTRACT

Pancreatic cancer is chemo-resistant and metastasizes early with an overall five-year survival of ∼8.2%. First-in-class imipridone ONC201 is a small molecule in clinical trials with anti-cancer activity. ONC212, a fluorinated-ONC201 analogue, shows preclinical efficacy in melanoma and hepatocellular-cancer models. We investigated efficacy of ONC201 and ONC212 against pancreatic cancer cell lines (N=16 including 9 PDX-cell lines). We demonstrate ONC212 efficacy in 4 in-vivo models including ONC201-resistant tumors. ONC212 is active in pancreatic cancer as single agent or in combination with 5-fluorouracil, irinotecan, oxaliplatin or RTK inhibitor crizotinib. Based on upregulation of pro-survival IGF1-R in some tumors, we found an active combination of ONC212 with inhibitor AG1024, including in vivo. We show a rationale for targeting pancreatic cancer using ONC212 combined with targeting the unfolded-protein response and ER chaperones such as GRP78/BIP. Our results lay the foundation to test imipridones, anti-cancer agents, in pancreatic cancer, that is refractory to most drugs.

19.
PLoS One ; 12(8): e0180541, 2017.
Article in English | MEDLINE | ID: mdl-28767654

ABSTRACT

Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.


Subject(s)
Biomarkers, Tumor/genetics , Central Nervous System Neoplasms/physiopathology , Colorectal Neoplasms/physiopathology , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/physiopathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Central Nervous System Neoplasms/genetics , Colorectal Neoplasms/genetics , Glioblastoma/genetics , HCT116 Cells , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Imidazoles , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Neoplastic Stem Cells/metabolism , Pyridines , Pyrimidines , Transcriptome , Wnt Signaling Pathway/drug effects
20.
Cancer Res ; 62(11): 3184-94, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12036932

ABSTRACT

The recent characterization of MHC-displayed tumor-associated antigensthat recognize effector cells of the immune system has created new perspectives for cancer therapy. Antibodies that recognize these tumor-associated MHC-peptide complexes with the same specificity as the T-cell antigen receptor will therefore be valuable tools for immunotherapy as well as for studying antigen presentation in human cancers. Most tumor-associated antigens are expressed in only one or a few tumor types; however, recently specific T-cell epitopes derived from the telomerase catalytic subunit (hTERT) that are widely expressed in many cancers were identified and shown to be recognized by CTLs derived from cancer patients. We selected a large nonimmune repertoire of phage Fab antibodies on recombinant human class I HLA-A2 complexes displaying two distinct antigenic T-cell epitopes derived from hTERT. We isolated a surprisingly large panel of high-affinity human recombinant Fab antibodies that exhibited peptide-specific, MHC-restricted binding characteristics of T cells. The analyzed Fabs not only recognize the cognate MHC-peptide complex in a recombinant soluble form but also the native complex as displayed on the surface of antigen-presenting cells and hTERT-expressing tumor cells. These findings demonstrate for the first time the ability to transform the unique fine specificity but low intrinsic affinity of TCRs on T cells into high-affinity soluble antibody molecules endowed with a T-cell antigen receptor-like specificity. These molecules may prove to be very important and widely applicable for monitoring the expression of specific MHC-peptide complexes on the surface of tumor and immune cells, for structure-function studies of TCR-peptide-MHC interactions, as well as for developing new targeting agents for immunotherapy.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Immunoglobulin Fragments/immunology , T-Lymphocytes/immunology , Telomerase/immunology , Animals , Antibody Specificity , Antigen-Presenting Cells/immunology , DNA-Binding Proteins , Flow Cytometry , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , Humans , Immunoglobulin Fragments/genetics , Immunoglobulin Fragments/isolation & purification , Immunoglobulin Fragments/metabolism , Mice , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL