Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Nature ; 588(7836): 124-129, 2020 12.
Article in English | MEDLINE | ID: mdl-33268865

ABSTRACT

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Subject(s)
Aging/genetics , Cellular Reprogramming/genetics , DNA Methylation , Epigenesis, Genetic , Eye , Nerve Regeneration/genetics , Vision, Ocular/genetics , Vision, Ocular/physiology , Aging/physiology , Animals , Axons/physiology , Cell Line, Tumor , Cell Survival , DNA-Binding Proteins/genetics , Dependovirus/genetics , Dioxygenases , Disease Models, Animal , Eye/cytology , Eye/innervation , Eye/pathology , Female , Genetic Vectors/genetics , Glaucoma/genetics , Glaucoma/pathology , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Octamer Transcription Factor-3/genetics , Optic Nerve Injuries/genetics , Proto-Oncogene Proteins/genetics , Retinal Ganglion Cells/cytology , SOXB1 Transcription Factors/genetics , Transcriptome/genetics
2.
Proc Natl Acad Sci U S A ; 120(9): e2215840120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802439

ABSTRACT

Biomarkers developed from DNA methylation (DNAm) data are of growing interest as predictors of health outcomes and mortality in older populations. However, it is unknown how epigenetic aging fits within the context of known socioeconomic and behavioral associations with aging-related health outcomes in a large, population-based, and diverse sample. This study uses data from a representative, panel study of US older adults to examine the relationship between DNAm-based age acceleration measures in the prediction of cross-sectional and longitudinal health outcomes and mortality. We examine whether recent improvements to these scores, using principal component (PC)-based measures designed to remove some of the technical noise and unreliability in measurement, improve the predictive capability of these measures. We also examine how well DNAm-based measures perform against well-known predictors of health outcomes such as demographics, SES, and health behaviors. In our sample, age acceleration calculated using "second and third generation clocks," PhenoAge, GrimAge, and DunedinPACE, is consistently a significant predictor of health outcomes including cross-sectional cognitive dysfunction, functional limitations and chronic conditions assessed 2 y after DNAm measurement, and 4-y mortality. PC-based epigenetic age acceleration measures do not significantly change the relationship of DNAm-based age acceleration measures to health outcomes or mortality compared to earlier versions of these measures. While the usefulness of DNAm-based age acceleration as a predictor of later life health outcomes is quite clear, other factors such as demographics, SES, mental health, and health behaviors remain equally, if not more robust, predictors of later life outcomes.


Subject(s)
Aging , Epigenesis, Genetic , Humans , Aged , Cross-Sectional Studies , Aging/genetics , DNA Methylation , Biomarkers , Acceleration
3.
Semin Cell Dev Biol ; 116: 180-193, 2021 08.
Article in English | MEDLINE | ID: mdl-33509689

ABSTRACT

Quantifying biological aging is critical for understanding why aging is the primary driver of morbidity and mortality and for assessing novel therapies to counter pathological aging. In the past decade, many biomarkers relevant to brain aging have been developed using various data types and modeling techniques. Aging involves numerous interconnected processes, and thus many complementary biomarkers are needed, each capturing a different slice of aging biology. Here we present a hierarchical framework highlighting how these biomarkers are related to each other and the underlying biological processes. We review those measures most studied in the context of brain aging: epigenetic clocks, proteomic clocks, and neuroimaging age predictors. Many studies have linked these biomarkers to cognition, mental health, brain structure, and pathology during aging. We also delve into the challenges and complexities in interpreting these biomarkers and suggest areas for further innovation. Ultimately, a robust mechanistic understanding of these biomarkers will be needed to effectively intervene in the aging process to prevent and treat age-related disease.


Subject(s)
Aging/physiology , Biomarkers/metabolism , Brain/physiopathology , Aged , Aged, 80 and over , Humans
4.
Cancer ; 127(18): 3361-3371, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34027995

ABSTRACT

BACKGROUND: The authors measured epigenetic age acceleration (EAA) during and after cancer treatment and its association with inflammation and fatigue, which is a debilitating symptom in patients with cancer. METHODS: Patients who had head and neck cancer without distant metastases were assessed before, immediately after, and at 6 months and 12 months postradiotherapy. Blood DNA methylation was assessed using a proprietary bead chip (the Illumina MethylationEPIC BeadChip). EAA was calculated using the Levine epigenetic clock (DNAmPhenoAge), adjusted for chronological age. Fatigue was assessed using the Multidimensional Fatigue Inventory-20. Inflammatory markers were measured using standard techniques. RESULTS: Most patients (N = 133) were men, White, had advanced disease, and received concurrent chemoradiation. EAA changes over time were significant, with the largest increase (4.9 years) observed immediately after radiotherapy (P < .001). Increased EAA was associated with elevated fatigue (P = .003) over time, and patients who had severe fatigue experienced 3.1 years higher EAA than those who had low fatigue (P < .001), which was more prominent (5.6 years; P = .018) for patients who had human papillomavirus-unrelated disease at 12 months posttreatment. EAA was also positively associated with inflammatory markers, including C-reactive protein (CRP) and interleukin-6 (IL-6), over time (P < .001), and patients who had high CRP and IL-6 levels exhibited increases of 4.6 and 5.9 years, respectively, in EAA compared with those who had low CRP and IL-6 levels (P < .001). CRP and IL-6 mediated the association between EAA and fatigue (CRP: 95% CI, 0.060-0.279; IL-6: 95% CI, 0.024-0.220). CONCLUSIONS: Patients with head and neck cancer experienced increased EAA, especially immediately after treatment completion. EAA was associated with greater fatigue and inflammation, including 1 year after treatment. Inflammation may be a target to reduce the impact of age acceleration on poor functional outcomes.


Subject(s)
Epigenesis, Genetic , Head and Neck Neoplasms , Acceleration , Fatigue/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Humans , Inflammation/genetics , Inflammation/metabolism , Longitudinal Studies , Male
5.
Behav Genet ; 50(2): 73-83, 2020 03.
Article in English | MEDLINE | ID: mdl-31820295

ABSTRACT

The Louisville Twin Study (LTS) began in 1958 and became a premier longitudinal twin study of cognitive development. The LTS continuously collected data from twins through 2000 after which the study closed indefinitely due to lack of funding. Now that the majority of the sample is age 40 or older (61.36%, N = 1770), the LTS childhood data can be linked to midlife cognitive functioning, among other physical, biological, social, and psychiatric outcomes. We report results from two pilot studies in anticipation of beginning the midlife phase of the LTS. The first pilot study was a participant tracking study, in which we showed that approximately 90% of the Louisville families randomly sampled (N = 203) for the study could be found. The second pilot study consisted of 40 in-person interviews in which twins completed cognitive, memory, biometric, and functional ability measures. The main purpose of the second study was to correlate midlife measures of cognitive functioning to a measure of biological age, which is an alternative index to chronological age that quantifies age as a function of the breakdown of structural and functional physiological systems, and then to relate both of these measures to twins' cognitive developmental trajectories. Midlife IQ was uncorrelated with biological age (- .01) while better scores on episodic memory more strongly correlated with lower biological age (- .19 to - .31). As expected, midlife IQ positively correlated with IQ measures collected throughout childhood and adolescence. Additionally, positive linear rates of change in FSIQ scores in childhood significantly correlated with biological age (- .68), physical functioning (.71), and functional ability (- .55), suggesting that cognitive development predicts lower biological age, better physical functioning, and better functional ability. In sum, the Louisville twins can be relocated to investigate whether and how early and midlife cognitive and physical health factors contribute to cognitive aging.


Subject(s)
Aging/physiology , Cognitive Aging/physiology , Cognitive Aging/psychology , Cognition/physiology , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pilot Projects , Twins/genetics , Twins/psychology , Twins, Dizygotic/genetics , Twins, Dizygotic/psychology , Twins, Monozygotic/genetics , Twins, Monozygotic/psychology
6.
PLoS Med ; 16(6): e1002827, 2019 06.
Article in English | MEDLINE | ID: mdl-31211779

ABSTRACT

BACKGROUND: An individual's rate of aging directly influences his/her susceptibility to morbidity and mortality. Thus, quantifying aging and disentangling how various factors coalesce to produce between-person differences in the rate of aging, have important implications for potential interventions. We recently developed and validated a novel multi-system-based aging measure, Phenotypic Age (PhenoAge), which has been shown to capture mortality and morbidity risk in the full US population and diverse subpopulations. The aim of this study was to evaluate associations between PhenoAge and a comprehensive set of factors, including genetic scores, childhood and adulthood circumstances, and health behaviors, to determine the relative contributions of these factors to variance in this aging measure. METHODS AND FINDINGS: Based on data from 2,339 adults (aged 51+ years, mean age 69.4 years, 56% female, and 93.9% non-Hispanic white) from the US Health and Retirement Study, we calculated PhenoAge and evaluated the multivariable associations for a comprehensive set of factors using 2 innovative approaches-Shapley value decomposition (the Shapley approach hereafter) and hierarchical clustering. The Shapley approach revealed that together all 11 study domains (4 childhood and adulthood circumstances domains, 5 polygenic score [PGS] domains, and 1 behavior domain, and 1 demographic domain) accounted for 29.2% (bootstrap standard error = 0.003) of variance in PhenoAge after adjustment for chronological age. Behaviors exhibited the greatest contribution to PhenoAge (9.2%), closely followed by adulthood adversity, which was suggested to contribute 9.0% of the variance in PhenoAge. Collectively, the PGSs contributed 3.8% of the variance in PhenoAge (after accounting for chronological age). Next, using hierarchical clustering, we identified 6 distinct subpopulations based on the 4 childhood and adulthood circumstances domains. Two of these subpopulations stood out as disadvantaged, exhibiting significantly higher PhenoAges on average. Finally, we observed a significant gene-by-environment interaction between a previously validated PGS for coronary artery disease and the seemingly most disadvantaged subpopulation, suggesting a multiplicative effect of adverse life course circumstances coupled with genetic risk on phenotypic aging. The main limitations of this study were the retrospective nature of self-reported circumstances, leading to possible recall biases, and the unrepresentative racial/ethnic makeup of the population. CONCLUSIONS: In a sample of US older adults, genetic, behavioral, and socioenvironmental circumstances during childhood and adulthood account for about 30% of differences in phenotypic aging. Our results also suggest that the detrimental effects of disadvantaged life course circumstances for health and aging may be further exacerbated among persons with genetic predisposition to coronary artery disease. Finally, our finding that behaviors had the largest contribution to PhenoAge highlights a potential policy target. Nevertheless, further validation of these findings and identification of causal links are greatly needed.


Subject(s)
Aging/genetics , Gene-Environment Interaction , Health Behavior , Healthy Aging/genetics , Life Change Events , Retirement , Aged , Aged, 80 and over , Aging/psychology , Female , Health Behavior/physiology , Healthy Aging/psychology , Humans , Male , Middle Aged , Phenotype , Retirement/psychology , Retirement/trends
7.
Proc Natl Acad Sci U S A ; 113(33): 9327-32, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27457926

ABSTRACT

Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further.


Subject(s)
Aging/physiology , Menopause/physiology , Adult , Epigenesis, Genetic , Female , Humans , Mendelian Randomization Analysis , Middle Aged , Ovariectomy , Polymorphism, Single Nucleotide
8.
Am J Epidemiol ; 187(6): 1220-1230, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29149257

ABSTRACT

The geroscience hypothesis posits that therapies to slow biological processes of aging can prevent disease and extend healthy years of life. To test such "geroprotective" therapies in humans, outcome measures are needed that can assess extension of disease-free life span. This need has spurred development of different methods to quantify biological aging. But different methods have not been systematically compared in the same humans. We implemented 7 methods to quantify biological aging using repeated-measures physiological and genomic data in 964 middle-aged humans in the Dunedin Study (New Zealand; persons born 1972-1973). We studied 11 measures in total: telomere-length and erosion, 3 epigenetic-clocks and their ticking rates, and 3 biomarker-composites. Contrary to expectation, we found low agreement between different measures of biological aging. We next compared associations between biological aging measures and outcomes that geroprotective therapies seek to modify: physical functioning, cognitive decline, and subjective signs of aging, including aged facial appearance. The 71-cytosine-phosphate-guanine epigenetic clock and biomarker composites were consistently related to these aging-related outcomes. However, effect sizes were modest. Results suggested that various proposed approaches to quantifying biological aging may not measure the same aspects of the aging process. Further systematic evaluation and refinement of measures of biological aging is needed to furnish outcomes for geroprotector trials.


Subject(s)
Aging/physiology , Biological Clocks , Biomarkers , Telomere Homeostasis , Cohort Studies , Female , Humans , Male , Middle Aged
9.
Demography ; 55(2): 387-402, 2018 04.
Article in English | MEDLINE | ID: mdl-29511995

ABSTRACT

Increasing life expectancy has been interpreted as improving health of a population. However, mortality is not always a reliable proxy for the pace of aging and could instead reflect achievement in keeping ailing people alive. Using data from NHANES III (1988-1994) and NHANES IV (2007-2010), we examined how biological age, relative to chronological age, changed in the United States between 1988 and 2010, while estimating the contribution of changes in modifiable health behaviors. Results suggest that biological age is lower for more recent periods; however, the degree of improvement varied across age and sex groups. Overall, older adults experienced the greatest improvement or decreases in biological age. Males, especially those in the youngest and oldest groups, experienced greater declines in biological age than females. These differences were partially explained by age- and sex-specific changes in behaviors, such as smoking, obesity, and medication use. Slowing the pace of aging, along with increasing life expectancy, has important social and economic implications; thus, identifying modifiable risk factors that contribute to cohort differences in health and aging is essential.


Subject(s)
Aging , Health Behavior , Life Expectancy/trends , Adult , Age Factors , Aged , Anticholesteremic Agents/administration & dosage , Antihypertensive Agents/administration & dosage , Female , Humans , Male , Middle Aged , Nutrition Surveys , Obesity/epidemiology , Racial Groups , Risk Factors , Sex Factors , Smoking/epidemiology , Socioeconomic Factors , United States/epidemiology , Young Adult
10.
Proc Natl Acad Sci U S A ; 112(30): E4104-10, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26150497

ABSTRACT

Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their "biological aging" (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.


Subject(s)
Aging , Biomarkers/metabolism , Adult , Cognition , Cross-Sectional Studies , Humans , Life Expectancy , Longitudinal Studies , Middle Aged , Regression Analysis , Time Factors
11.
Am J Epidemiol ; 186(5): 503-509, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911009

ABSTRACT

Environmental or social challenges can stimulate a cascade of coordinated physiological changes in stress response systems. Unfortunately, chronic activation of these adaptations under conditions such as low socioeconomic status (SES) can have negative consequences for long-term health. While there is substantial evidence tying low SES to increased disease risk and reduced life expectancy, the underlying biology remains poorly understood. Using pilot data on 120 older adults from the Health and Retirement Study (United States, 2002-2010), we examined the associations between SES and gene expression levels in adulthood, with particular focus on a gene expression program known as the conserved transcriptional response to adversity. We also used a bioinformatics-based approach to assess the activity of specific gene regulation pathways involved in inflammation, antiviral responses, and stress-related neuroendocrine signaling. We found that low SES was related to increased expression of conserved transcriptional response to adversity genes and distinct patterns of proinflammatory, antiviral, and stress signaling (e.g., sympathetic nervous system and hypothalamic-pituitary-adrenal axis) transcription factor activation.


Subject(s)
Chronic Disease/epidemiology , Gene Expression Profiling , Inflammation/genetics , Life Expectancy , Poverty , Social Environment , Stress, Psychological/genetics , Aged , Aged, 80 and over , Female , Humans , Leukocytes , Male , Middle Aged , Pilot Projects , Social Class , Time , United States/epidemiology
12.
Behav Genet ; 46(1): 72-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26330209

ABSTRACT

Depending on genetic sensitivity to it, stress may affect depressive symptomatology differentially. Applying the stress-diathesis hypothesis to older adults, we postulate: (1) recent stress will associate with increased depressive symptom levels and (2) this effect will be greater for individuals with at least one short allele of the serotonin transporter gene promoter region (5-HTTLPR). Further, we employ a design that addresses specific limitations of many prior studies that have examined the 5-HTTLPR × SLE relation, by: (a) using a within-person repeated-measures design to address fluctuations that occur within individuals over time, increase power for detecting G × E, and address GE correlation; (b) studying reports of exogenous stressful events (those unlikely to be caused by depression) to help rule out reverse causation and negativity bias, and in order to assess stressors that are more etiologically relevant to depressive symptomatology in older adults. The sample is drawn from the Health and Retirement Study, a U.S. population-based study of older individuals (N = 28,248; mean age = 67.5; 57.3 % female; 80.7 % Non-Hispanic White, 14.9 % Hispanic/Latino, 4.5 % African American; genetic subsample = 12,332), from whom measures of depressive symptoms and exogenous stressors were collected biannually (1994-2010). Variation in the 5-HTTLPR was characterized via haplotype, using two single nucleotide polymorphisms (SNPs). Ordered logit models were constructed to predict levels of depressive symptoms from 5-HTTLPR and stressors, comparing results of the most commonly applied statistical approaches (i.e., comparing allelic and genotypic models, and continuous and categorical predictors) used in the literature. All models were stratified by race/ethnicity. Overall, results show a main effect of recent stress for all ethnic groups, and mixed results for the variation in 5-HTTLPR × stress interaction, contingent upon statistical model used. Findings suggest there may be a differential effect of stressors and 5-HTTLPR on depressive symptoms by ethnicity, but further research is needed, particularly when using a haplotype to characterize variation in 5-HTTLPR in population-based sample with a diverse ethnic composition.


Subject(s)
Depression/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Stress, Psychological/complications , Aged , Alleles , Depression/metabolism , Depressive Disorder/genetics , Ethnicity/genetics , Female , Gene-Environment Interaction , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Life Change Events , Male , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Stress, Psychological/genetics
14.
Am J Hum Biol ; 26(6): 768-76, 2014.
Article in English | MEDLINE | ID: mdl-25088793

ABSTRACT

OBJECTIVES: Concepts such as Allostatic Load, Framingham Risk Score, and Biological Age were developed to combine information from multiple measures into a single latent variable that can be used to quantify a person's biological state. Given these varying approaches, the goal of this article is to compare how well these three measures predict subsequent all-cause and disease-specific mortality within a large nationally representative U.S. sample. METHODS: Our study population consisted of 9,942 adults, ages 30 and above from National Health and Nutrition Examination Survey III. Receiver Operating Characteristic curves and Cox Proportional Hazard models for the whole sample and for stratified age groups were used to compare how well Allostatic Load, Framingham Risk Score, and Biological Age predict ten-year all-cause and disease-specific mortality in the sample, for whom there were 1,076 deaths over 96,420 person years of exposure. RESULTS: Overall, Biological Age predicted 10-year mortality more accurately than other measures for the full age range, as well as for participants ages 50 to 69 and 70+. Additionally, out of the three measures, Biological Age had the strongest association with all-cause and cancer mortality, while the Framingham Risk Score had the strongest association with CVD mortality. CONCLUSIONS: Methods for quantifying biological risk provide important approaches to improving our understanding of the causes and consequences of changes in physiological function and dysregulation. Biological Age offers an alternative and, in some cases a more accurate summary approach to the traditionally used methods, such as Allostatic Load and Framingham Risk Score.


Subject(s)
Aging , Allostasis , Mortality , Adult , Aged , Cardiovascular Diseases/mortality , Female , Humans , Male , Middle Aged , ROC Curve , Risk Assessment/methods , United States
15.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854054

ABSTRACT

As epigenetic clocks have evolved from powerful estimators of chronological aging to predictors of mortality and disease risk, it begs the question of what role DNA methylation plays in the aging process. We hypothesize that while it has the potential to serve as an informative biomarker, DNA methylation could also be a key to understanding the biology entangled between aging, (de)differentiation, and epigenetic reprogramming. Here we use an unsupervised approach to analyze time associated DNA methylation from both in vivo and in vitro samples to measure an underlying signal that ties these phenomena together. We identify a methylation pattern shared across all three, as well as a signal that tracks aging in tissues but appears refractory to reprogramming, suggesting that aging and reprogramming may not be fully mirrored processes.

16.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645168

ABSTRACT

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they serve as reference genes (often called housekeeping genes) in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be applied to animals across the lifespan.

17.
Nat Commun ; 15(1): 1309, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378685

ABSTRACT

In mice, periodic cycles of a fasting mimicking diet (FMD) protect normal cells while killing damaged cells including cancer and autoimmune cells, reduce inflammation, promote multi-system regeneration, and extend longevity. Here, we performed secondary and exploratory analysis of blood samples from a randomized clinical trial (NCT02158897) and show that 3 FMD cycles in adult study participants are associated with reduced insulin resistance and other pre-diabetes markers, lower hepatic fat (as determined by magnetic resonance imaging) and increased lymphoid to myeloid ratio: an indicator of immune system age. Based on a validated measure of biological age predictive of morbidity and mortality, 3 FMD cycles were associated with a decrease of 2.5 years in median biological age, independent of weight loss. Nearly identical findings resulted from  a second clinical study (NCT04150159). Together these results provide initial support for beneficial effects of the FMD on multiple cardiometabolic risk factors and biomarkers of biological age.


Subject(s)
Diet , Fasting , Adult , Humans , Animals , Mice , Child, Preschool , Longevity , Liver/diagnostic imaging , Causality
18.
Sci Adv ; 9(29): eadf4163, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37467337

ABSTRACT

Aging is a leading risk factor for cancer. While it is proposed that age-related accumulation of somatic mutations drives this relationship, it is likely not the full story. We show that aging and cancer share a common epigenetic replication signature, which we modeled using DNA methylation from extensively passaged immortalized human cells in vitro and tested on clinical tissues. This signature, termed CellDRIFT, increased with age across multiple tissues, distinguished tumor from normal tissue, was escalated in normal breast tissue from cancer patients, and was transiently reset upon reprogramming. In addition, within-person tissue differences were correlated with predicted lifetime tissue-specific stem cell divisions and tissue-specific cancer risk. Our findings suggest that age-related replication may drive epigenetic changes in cells and could push them toward a more tumorigenic state.


Subject(s)
Epigenome , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Epigenesis, Genetic , Aging/genetics , Risk Factors
19.
Aging Cell ; 21(2): e13553, 2022 02.
Article in English | MEDLINE | ID: mdl-35104377

ABSTRACT

Aging is associated with dramatic changes to DNA methylation (DNAm), although the causes and consequences of such alterations are unknown. Our ability to experimentally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability to study and manipulate these changes using in vitro models. However, it remains unclear whether the changes elicited by cells in culture can serve as a model of what is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced representation bisulfite sequencing. By developing a measure that tracked cellular aging in vitro, we tested whether it tracked physiological aging in various mouse tissues and whether anti-aging interventions modulate this measure. Our measure, termed CultureAGE, was shown to strongly increase with age when examined in multiple tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the measure was not a marker of cellular senescence, suggesting that it reflects a distinct yet progressive cellular aging phenomena that can be induced in vitro. Furthermore, we demonstrated slower epigenetic aging in animals undergoing caloric restriction and a resetting of our measure in lung and kidney fibroblasts when re-programmed to iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG) factors as potentially important chromatin regulators in translational culture aging phenotypes. Overall, this study supports the concept that physiologically relevant aging changes can be induced in vitro and used to uncover mechanistic insights into epigenetic aging.


Subject(s)
Epigenesis, Genetic , Fibroblasts , Aging/genetics , Animals , DNA Methylation/genetics , Epigenomics , Mice
20.
EClinicalMedicine ; 51: 101548, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35844770

ABSTRACT

Background: Accelerated aging leads to increasing burdens of chronic diseases in late life, posing a huge challenge to the society. With two well-developed aging measures (i.e., physiological dysregulation [PD] and frailty index [FI]), this study aimed to evaluate the relative contributions of life course circumstances (e.g., childhood and adulthood socioeconomic status) to variance in aging. Methods: We assembled data for 6224 middle-aged and older adults in China from the 2014 life course survey (June to December 2014), the 2015 biomarker collection (July 2015 to January 2016), and the 2015 main survey (July 2015 to January 2016) of the China Health and Retirement Longitudinal Study. Two aging measures (PD and FI) were calculated, with a higher value indicating more accelerated aging. Life course circumstances included childhood (i.e., socioeconomic status, war, health, trauma, relationship, and parents' health) and adulthood circumstances (i.e., socioeconomic status, adversity, and social support), demographics, and behaviours. The Shapley value decomposition, hierarchical clustering, and general linear regression models were performed. Findings: The Shapley value decomposition revealed that all included life course circumstances accounted for about 6·3% and 29·7% of variance in PD and FI, respectively. We identified six subpopulations who shared similar patterns in terms of childhood and adulthood circumstances. The most disadvantaged subpopulation (i.e., subpopulation 6 [more childhood trauma and adulthood adversity]) consistently exhibited accelerated aging indicated by the two aging measures. Relative to the most advantaged subpopulation (i.e., subpopulation 1 [less childhood trauma and adulthood adversity]), PD and FI in the most disadvantaged subpopulation were increased by an average of 0·14 (i.e., coefficient, by one-standard deviation, 95% confidence interval [CI] 0·06-0·21; p < 0·0001) and 0·10 (by one-point, 95% CI 0·09-0·11; p < 0·0001), respectively. Interpretation: Our findings highlight the different contributions of life course circumstances to phenotypic and functional aging. Special attention should be given to promoting health for the disadvantaged subpopulation and narrowing their health gap with advantaged counterparts. Funding: National Natural Science Foundation of China, Milstein Medical Asian American Partnership Foundation, Natural Science Foundation of Zhejiang Province, Fundamental Research Funds for the Central Universities, National Institute on Aging, National Centre for Advancing Translational Sciences, and Yale Alzheimer's Disease Research Centre.

SELECTION OF CITATIONS
SEARCH DETAIL