Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Opt Express ; 25(11): 12131-12143, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786571

ABSTRACT

Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.

2.
Cancer Metab ; 12(1): 16, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812058

ABSTRACT

BACKGROUND: The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS: Using two cancer and one non-cancer breast cell line, we evaluate the effect of ß-hydroxybutyrate (ßHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of ßHb on the gene expression profile. RESULTS: Significant effects were observed following treatment by ßHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following ßHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS: Based on our results, we conclude that differential response of cancer cell lines to ßHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.

3.
Parasit Vectors ; 13(1): 267, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434550

ABSTRACT

BACKGROUND: Equine piroplasmosis is a highly endemic protozoan disease of horses worldwide, caused by Theileria equi and Babesia caballi. While most horses in endemic areas are subclinically infected, the mechanisms leading to clinical outcome are vastly unknown. Moreover, since clinical signs of disease are not specific, and the prevalence in endemic areas is high, it is difficult to determine if equine piroplasmosis is the cause of disease. To identify possible mechanisms leading to the clinical outcome in an endemic area, we compared parasite loads and genotypes in clinically and subclinically infected horses. METHODS: Blood was collected from horses with clinical signs consistent with equine piroplasmosis, and from apparently healthy horses in Israel. Packed cell volume and total solids were measured. Quantitative and diagnostic polymerase chain reaction were used to identify, quantify and classify equine piroplasmosis infection. Phylogenetic analyses were used to determine the genotype of both parasites. RESULTS: For both parasites, clinical cases were associated with low mean packed cell volume and high mean parasite load (P < 0.001), enabling the determination of a cut-off value to distinguish between clinically and subclinically infected horses. Samples of Theileria equi from subclinical horses were classified into three different 18S rRNA genotypes, D (n = 23), A (n = 12) and C (n = 5), while samples from all clinical cases (n = 6) were classified as genotype A. The sequences of T. equi equi merozoite antigens 1 (ema-1, n = 9) and 2 (ema-2, n = 11) genes were fairly conserved and did not differ between clinical and subclinical cases. Babesia caballi rhoptry associated protein-1 (rap-1) was classified into sub-genotypes A1 (n = 14) and A2 (n = 5) with no association to clinical outcome. Classification of the 18S rRNA gene (sub-genotypes B1 and B2) agreed with the rap-1 classification. CONCLUSIONS: The results of this study suggest that quantification of parasite loads of infected horses may be used to distinguish between infections resulting in disease and subclinical cases. Although number of clinical cases is limited, we identified T. equi 18S rRNA genotype A to be associated with clinical disease. This finding emphasizes the importance of in-depth genetic characterization of T. equi genotypes to identify possible markers for virulence.


Subject(s)
Babesia/genetics , Babesiosis/parasitology , Genotype , Horse Diseases/parasitology , Parasite Load , Theileria/genetics , Theileriasis/parasitology , Animals , Babesiosis/epidemiology , DNA, Protozoan/blood , Female , Horses/parasitology , Israel/epidemiology , Male , RNA, Ribosomal, 18S/genetics , Theileriasis/epidemiology
4.
Viruses ; 12(10)2020 09 28.
Article in English | MEDLINE | ID: mdl-32998459

ABSTRACT

West Nile virus (WNV) and Usutu virus (USUV) are arboviruses transmitted by mosquito vectors. Whereas WNV is endemic in Israel, the Middle East, Europe, and in the Americas, data regarding the prevalence of USUV in the Middle East is limited. While both viruses share similar reservoirs and vectors, exposure of horses in the area to USUV have never been assessed. The aim of this study was to estimate the seroprevalence and co-exposure of WNV and USUV in horses in Israel. A total of 327 serum samples from healthy unvaccinated horses in Israel collected in 2018 were tested for neutralizing antibodies against WNV and USUV. Seroprevalence for neutralizing antibodies against WNV and USUV was 84.1% and 10.8%, respectively. Management and age were significantly associated with WNV and USUV seropositivity. This is the first report describing exposure of horses in Israel to USUV, which indicates that this zoonotic pathogen should be included in the differential diagnosis list of neuroinvasive disease in this country.


Subject(s)
Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Flavivirus , Horse Diseases/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross-Sectional Studies , Horse Diseases/immunology , Horse Diseases/virology , Horses , Israel/epidemiology , Mosquito Vectors/virology , Risk Factors , Seroepidemiologic Studies , West Nile Fever/immunology
5.
Anticancer Res ; 40(7): 3831-3837, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32620622

ABSTRACT

BACKGROUND/AIM: The ketogenic diet has recently gained interest as potential adjuvant therapy for cancer. Many researchers have endeavored to support this claim in vitro. One common model utilizes treatment with exogenous acetoacetate in lithium salt form (LiAcAc). We aimed to determine whether the effects of treatment with LiAcAc on cell viability, as reported in the literature, accurately reflect the influence of acetoacetate. MATERIALS AND METHODS: Breast cancer and normal cell lines were treated with acetoacetate, in lithium and sodium salt forms, and cell viability was assessed. RESULTS: The effect of LiAcAc on cells was mediated by Li ions. Our results showed that the cytotoxic effects of LiAcAc treatment were significantly similar to those caused by LiCl, and also treatment with NaAcAc did not cause any significant cytotoxic effect. CONCLUSION: Treatment of cells with LiAcAc is not a convincing in vitro model for studying ketogenic diet. These findings are highly important for interpreting previously published results, and for designing new experiments to study the ketogenic diet in vitro.


Subject(s)
Acetoacetates/pharmacology , Breast Neoplasms/drug therapy , Lithium Compounds/pharmacology , Lithium/pharmacology , Acetoacetates/chemistry , Adenosine Triphosphate/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cations, Monovalent/chemistry , Cations, Monovalent/pharmacology , Cell Growth Processes/drug effects , Cell Line, Tumor , Humans , Lithium/chemistry , Lithium Chloride/chemistry , Lithium Chloride/pharmacology , Lithium Compounds/chemistry , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL