Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2316662121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557187

ABSTRACT

Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Drug Resistance, Viral/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/genetics , Mutation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
2.
Proc Natl Acad Sci U S A ; 120(26): e2305042120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339209

ABSTRACT

Metastases are reduced in CD81KO mice. In addition, a unique anti-CD81 antibody, 5A6, inhibits metastasis in vivo and invasion and migration in vitro. Here, we probed the structural components of CD81 required for the antimetastatic activity induced by 5A6. We found that the removal of either cholesterol or the intracellular domains of CD81 did not affect inhibition by the antibody. We show that the uniqueness of 5A6 is due not to increased affinity but rather to its recognition of a specific epitope on the large extracellular loop of CD81. Finally, we present a number of CD81 membrane-associated partners that may play a role in mediating the 5A6 antimetastatic attributes, including integrins and transferrin receptors.


Subject(s)
Antibodies , Integrins , Animals , Mice , Tetraspanin 28
3.
Blood ; 142(26): 2296-2304, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37683139

ABSTRACT

ABSTRACT: An early event in the genesis of follicular lymphoma (FL) is the acquisition of new glycosylation motifs in the B-cell receptor (BCR) due to gene rearrangement and/or somatic hypermutation. These N-linked glycosylation motifs (N-motifs) contain mannose-terminated glycans and can interact with lectins in the tumor microenvironment, activating the tumor BCR pathway. N-motifs are stable during FL evolution, suggesting that FL tumor cells are dependent on them for their survival. Here, we investigated the dynamics and potential impact of N-motif prevalence in FL at the single-cell level across distinct tumor sites and over time in 17 patients. Although most patients had acquired at least 1 N-motif as an early event, we also found (1) cases without N-motifs in the heavy or light chains at any tumor site or time point and (2) cases with discordant N-motif patterns across different tumor sites. Inferring phylogenetic trees of the patients with discordant patterns, we observed that both N-motif-positive and N-motif-negative tumor subclones could be selected and expanded during tumor evolution. Comparing N-motif-positive with N-motif-negative tumor cells within a patient revealed higher expression of genes involved in the BCR pathway and inflammatory response, whereas tumor cells without N-motifs had higher activity of pathways involved in energy metabolism. In conclusion, although acquired N-motifs likely support FL pathogenesis through antigen-independent BCR signaling in most patients with FL, N-motif-negative tumor cells can also be selected and expanded and may depend more heavily on altered metabolism for competitive survival.


Subject(s)
Lymphoma, Follicular , Humans , Lymphoma, Follicular/pathology , Glycosylation , Phylogeny , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Lectins , Tumor Microenvironment
4.
J Immunol ; 211(2): 295-305, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37256255

ABSTRACT

Spontaneous tumors that arise in genetically engineered mice recapitulate the natural tumor microenvironment and tumor-immune coevolution observed in human cancers, providing a more physiologically relevant preclinical model relative to implanted tumors. Similar to many cancer patients, oncogene-driven spontaneous tumors are often resistant to immunotherapy, and thus novel agents that can effectively promote antitumor immunity against these aggressive cancers show considerable promise for clinical translation, and their mechanistic assessment can broaden our understanding of tumor immunology. In this study, we performed extensive immune profiling experiments to investigate how tumor-targeted TLR9 stimulation remodels the microenvironment of spontaneously arising tumors during an effective antitumor immune response. To model the clinical scenario of multiple tumor sites, we used MMTV-PyMT transgenic mice, which spontaneously develop heterogeneous breast tumors throughout their 10 mammary glands. We found that i.v. administration of a tumor-targeting TLR9 agonist, referred to as PIP-CpG, induced a systemic T cell-mediated immune response that not only promoted regression of existing mammary tumors, but also elicited immune memory capable of delaying growth of independent newly arising tumors. Within the tumor microenvironment, PIP-CpG therapy initiated an inflammatory cascade that dramatically amplified chemokine and cytokine production, prompted robust infiltration and expansion of innate and adaptive immune cells, and led to diverse and unexpected changes in immune phenotypes. This study demonstrates that effective systemic treatment of an autochthonous multisite tumor model can be achieved using a tumor-targeted immunostimulant and provides immunological insights that will inform future therapeutic strategies.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Mice , Animals , Humans , Female , Toll-Like Receptor 9 , Mice, Transgenic , Adjuvants, Immunologic/pharmacology , Mammary Neoplasms, Animal/therapy , Breast Neoplasms/therapy , Tumor Microenvironment , Cell Line, Tumor
5.
Cell ; 142(5): 699-713, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20813259

ABSTRACT

Monoclonal antibodies are standard therapeutics for several cancers including the anti-CD20 antibody rituximab for B cell non-Hodgkin lymphoma (NHL). Rituximab and other antibodies are not curative and must be combined with cytotoxic chemotherapy for clinical benefit. Here we report the eradication of human NHL solely with a monoclonal antibody therapy combining rituximab with a blocking anti-CD47 antibody. We identified increased expression of CD47 on human NHL cells and determined that higher CD47 expression independently predicted adverse clinical outcomes in multiple NHL subtypes. Blocking anti-CD47 antibodies preferentially enabled phagocytosis of NHL cells and synergized with rituximab. Treatment of human NHL-engrafted mice with anti-CD47 antibody reduced lymphoma burden and improved survival, while combination treatment with rituximab led to elimination of lymphoma and cure. These antibodies synergized through a mechanism combining Fc receptor (FcR)-dependent and FcR-independent stimulation of phagocytosis that might be applicable to many other cancers.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD47 Antigen/immunology , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/therapy , Phagocytosis , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Murine-Derived , B-Lymphocytes/immunology , Cell Line, Tumor , Humans , Lymphoma, Non-Hodgkin/diagnosis , Mice , Receptors, Fc/immunology , Rituximab , Xenograft Model Antitumor Assays
6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35091467

ABSTRACT

Adoptive cellular therapy using chimeric antigen receptors (CARs) has revolutionized our treatment of relapsed B cell malignancies and is currently being integrated into standard therapy. The impact of selecting specific T cell subsets for CAR transduction remains under investigation. Previous studies demonstrated that effector T cells derived from naive, rather than central memory T cells mediate more potent antitumor effects. Here, we investigate a method to skew CAR transduction toward naive T cells without physical cell sorting. Viral-mediated CAR transduction requires ex vivo T cell activation, traditionally achieved using antibody-mediated strategies. CD81 is a T cell costimulatory molecule that when combined with CD3 and CD28 enhances naive T cell activation. We interrogate the effect of CD81 costimulation on resultant CAR transduction. We identify that upon CD81-mediated activation, naive T cells lose their identifying surface phenotype and switch to a memory phenotype. By prelabeling naive T cells and tracking them through T cell activation and CAR transduction, we document that CD81 costimulation enhanced naive T cell activation and resultantly generated a CAR T cell product enriched with naive-derived CAR T cells.


Subject(s)
Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Tetraspanin 28/pharmacology , Bioengineering/methods , CD28 Antigens/immunology , CD3 Complex/immunology , Cell Line, Tumor , Healthy Volunteers , Humans , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Signal Transduction/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocytes/drug effects , Tetraspanin 28/immunology , Tetraspanin 28/metabolism
7.
Biomacromolecules ; 25(7): 4305-4316, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38814265

ABSTRACT

The delivery of oligonucleotides across biological barriers is a challenge of unsurpassed significance at the interface of materials science and medicine, with emerging clinical utility in prophylactic and therapeutic vaccinations, immunotherapies, genome editing, and cell rejuvenation. Here, we address the role of readily available branched lipids in the design, synthesis, and evaluation of isoprenoid charge-altering releasable transporters (CARTs), a pH-responsive oligomeric nanoparticle delivery system for RNA. Systematic variation of the lipid block reveals an emergent relationship between the lipid block and the neutralization kinetics of the polycationic block. Unexpectedly, iA21A11, a CART with the smallest lipid side chain, isoamyl-, was identified as the lead isoprenoid CART for the in vitro transfection of immortalized lymphoblastic cell lines. When administered intramuscularly in a murine model, iA21A11-mRNA complexes induce higher protein expression levels than our previous lead CART, ONA. Isoprenoid CARTs represent a new delivery platform for RNA vaccines and other polyanion-based therapeutics.


Subject(s)
Lipids , RNA, Messenger , Animals , Mice , RNA, Messenger/genetics , Lipids/chemistry , Humans , Terpenes/chemistry , Archaea/genetics , Archaea/chemistry , Nanoparticles/chemistry
8.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34099563

ABSTRACT

Tetraspanins are an evolutionary conserved family of proteins involved in multiple aspects of cell physiology, including proliferation, migration and invasion, protein trafficking, and signal transduction; yet their detailed mechanism of action is unknown. Tetraspanins have no known natural ligands, but their engagement by antibodies has begun to reveal their role in cell biology. Studies of tetraspanin knockout mice and of germline mutations in humans have highlighted their role under normal and pathological conditions. Previously, we have shown that mice deficient in the tetraspanin CD81 developed fewer breast cancer metastases compared to their wild-type (WT) counterparts. Here, we show that a unique anti-human CD81 antibody (5A6) effectively halts invasion of triple-negative breast cancer (TNBC) cell lines. We demonstrate that 5A6 induces CD81 clustering at the cell membrane and we implicate JAM-A protein in the ability of this antibody to inhibit tumor cell invasion and migration. Furthermore, in a series of in vivo studies we demonstrate that this antibody inhibits metastases in xenograft models, as well as in syngeneic mice bearing a mouse tumor into which we knocked in the human CD81 epitope recognized by the 5A6 antibody.


Subject(s)
Breast Neoplasms/pathology , Tetraspanin 28/metabolism , Animals , Antibodies/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Epitopes/metabolism , Female , Humans , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , Neoplasm Invasiveness , Neoplasm Metastasis , Receptors, Cell Surface/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
9.
Bioconjug Chem ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36996808

ABSTRACT

Targeted delivery of nucleic acid therapeutics to the lungs could transform treatment options for pulmonary disease. We have previously developed oligomeric charge-altering releasable transporters (CARTs) for in vivo mRNA transfection and demonstrated their efficacy for use in mRNA-based cancer vaccination and local immunomodulatory therapies against murine tumors. While our previously reported glycine-based CART-mRNA complexes (G-CARTs/mRNA) show selective protein expression in the spleen (mouse, >99%), here, we report a new lysine-derived CART-mRNA complex (K-CART/mRNA) that, without additives or targeting ligands, shows selective protein expression in the lungs (mouse, >90%) following systemic IV administration. We further show that by delivering siRNA using the K-CART, we can significantly decrease expression of a lung-localized reporter protein. Blood chemistry and organ pathology studies demonstrate that K-CARTs are safe and well-tolerated. We report on the new step economical, organocatalytic synthesis (two steps) of functionalized polyesters and oligo-carbonate-co-α-aminoester K-CARTs from simple amino acid and lipid-based monomers. The ability to direct protein expression selectively in the spleen or lungs by simple, modular changes to the CART structure opens fundamentally new opportunities in research and gene therapy.

10.
Blood ; 137(21): 2869-2880, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33728464

ABSTRACT

Tumor heterogeneity complicates biomarker development and fosters drug resistance in solid malignancies. In lymphoma, our knowledge of site-to-site heterogeneity and its clinical implications is still limited. Here, we profiled 2 nodal, synchronously acquired tumor samples from 10 patients with follicular lymphoma (FL) using single-cell RNA, B-cell receptor (BCR) and T-cell receptor sequencing, and flow cytometry. By following the rapidly mutating tumor immunoglobulin genes, we discovered that BCR subclones were shared between the 2 tumor sites in some patients, but in many patients, the disease had evolved separately with limited tumor cell migration between the sites. Patients exhibiting divergent BCR evolution also exhibited divergent tumor gene-expression and cell-surface protein profiles. While the overall composition of the tumor microenvironment did not differ significantly between sites, we did detect a specific correlation between site-to-site tumor heterogeneity and T follicular helper (Tfh) cell abundance. We further observed enrichment of particular ligand-receptor pairs between tumor and Tfh cells, including CD40 and CD40LG, and a significant correlation between tumor CD40 expression and Tfh proliferation. Our study may explain discordant responses to systemic therapies, underscores the difficulty of capturing a patient's disease with a single biopsy, and furthers our understanding of tumor-immune networks in FL.


Subject(s)
Clonal Evolution/genetics , Lymphoma, Follicular/pathology , Single-Cell Analysis , Adult , Aged , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/genetics , Biopsy, Fine-Needle , CD40 Antigens/biosynthesis , CD40 Antigens/genetics , CD40 Ligand/biosynthesis , CD40 Ligand/genetics , DNA, Neoplasm/genetics , Disease Progression , Female , Flow Cytometry , Gene Rearrangement, B-Lymphocyte, Light Chain , Gene Rearrangement, T-Lymphocyte , Humans , Lymph Nodes/chemistry , Lymph Nodes/ultrastructure , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma, Follicular/chemistry , Lymphoma, Follicular/genetics , Male , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Phylogeny , RNA, Neoplasm/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Transcriptome , Tumor Microenvironment
11.
Nature ; 543(7647): 723-727, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28329770

ABSTRACT

Cancer somatic mutations can generate neoantigens that distinguish malignant from normal cells. However, the personalized identification and validation of neoantigens remains a major challenge. Here we discover neoantigens in human mantle-cell lymphomas by using an integrated genomic and proteomic strategy that interrogates tumour antigen peptides presented by major histocompatibility complex (MHC) class I and class II molecules. We applied this approach to systematically characterize MHC ligands from 17 patients. Remarkably, all discovered neoantigenic peptides were exclusively derived from the lymphoma immunoglobulin heavy- or light-chain variable regions. Although we identified MHC presentation of private polymorphic germline alleles, no mutated peptides were recovered from non-immunoglobulin somatically mutated genes. Somatic mutations within the immunoglobulin variable region were almost exclusively presented by MHC class II. We isolated circulating CD4+ T cells specific for immunoglobulin-derived neoantigens and found these cells could mediate killing of autologous lymphoma cells. These results demonstrate that an integrative approach combining MHC isolation, peptide identification, and exome sequencing is an effective platform to uncover tumour neoantigens. Application of this strategy to human lymphoma implicates immunoglobulin neoantigens as targets for lymphoma immunotherapy.


Subject(s)
Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Immunoglobulin Variable Region/immunology , Lymphoma, Mantle-Cell/immunology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , CD4-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , DNA Mutational Analysis , Epitopes, T-Lymphocyte/immunology , Exome/genetics , Genomics , HLA-D Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Immunotherapy/trends , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/therapy , Mutation , Proteomics
12.
Proteins ; 90(2): 601-614, 2022 02.
Article in English | MEDLINE | ID: mdl-34599827

ABSTRACT

G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and represent the primary targets of about one third of currently marketed drugs. Despite the critical importance, experimental structures have been determined for only a limited portion of GPCRs and functional mechanisms of GPCRs remain poorly understood. Here, we have constructed novel sequence coevolutionary models of the A and B classes of GPCRs and compared them with residue contact frequency maps generated with available experimental structures. Significant portions of structural residue contacts were successfully detected in the sequence-based covariational models. "Exception" residue contacts predicted from sequence coevolutionary models but not available structures added missing links that were important for GPCR activation and allosteric modulation. Moreover, we identified distinct residue contacts involving different sets of functional motifs for GPCR activation, such as the Na+ pocket, CWxP, DRY, PIF, and NPxxY motifs in the class A and the HETx and PxxG motifs in the class B. Finally, we systematically uncovered critical residue contacts tuned by allosteric modulation in the two classes of GPCRs, including those from the activation motifs and particularly the extracellular and intracellular loops in class A GPCRs. These findings provide a promising framework for rational design of ligands to regulate GPCR activation and allosteric modulation.


Subject(s)
Receptors, G-Protein-Coupled , Humans , Ligands , Receptors, G-Protein-Coupled/chemistry
13.
Biomacromolecules ; 23(7): 2976-2988, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35748182

ABSTRACT

Charge-altering releasable transporters (CARTs) are a class of oligonucleotide delivery vehicles shown to be effective for delivery of messenger RNA (mRNA) both in vitro and in vivo. Here, we exploited the chemical versatility of the CART synthesis to generate CARTs containing the small-molecule drug fingolimod (FTY720) as a strategy to increase mRNA delivery and expression in lymphocytes through a specific ligand-receptor interaction. Fingolimod is an FDA-approved small-molecule drug that, upon in vivo phosphorylation, binds to the sphingosine-1-phosphate receptor 1 (S1P1), which is highly expressed on lymphocytes. Compared to its non-fingolimod-conjugated analogue, the fingolimod-conjugated CART achieved superior transfection of activated human and murine T and B lymphocytes in vitro. The higher transfection of the fingolimod-conjugated CARTs was lost when cells were exposed to a free fingolimod before transfection. In vivo, the fingolimod-conjugated CART showed increased mRNA delivery to marginal zone B cells and NK cells in the spleen, relative to CARTs lacking fingolimod. Moreover, fingolimod-CART-mediated mRNA delivery induces peripheral blood T-cell depletion similar to free fingolimod. Thus, we show that functionalization of CARTs with a pharmacologically validated small molecule can increase transfection of a cellular population of interest while conferring some of the targeting properties of the conjugated small molecule to the CARTs.


Subject(s)
Fingolimod Hydrochloride , Lymphocytes , Animals , Fingolimod Hydrochloride/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Mice , Propylene Glycols/pharmacology , RNA, Messenger/genetics , Spleen , Transfection
14.
J Comput Aided Mol Des ; 36(3): 193-203, 2022 03.
Article in English | MEDLINE | ID: mdl-35262811

ABSTRACT

We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between - 6 and - 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.


Subject(s)
Anti-HIV Agents , HIV-1 , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Capsid/metabolism , Capsid Proteins/metabolism , Capsid Proteins/pharmacology , Molecular Docking Simulation , Protein Binding , Solvents , Workflow
15.
Blood ; 133(10): 1119-1129, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30591526

ABSTRACT

Follicular lymphoma (FL) is a low-grade B-cell malignancy that transforms into a highly aggressive and lethal disease at a rate of 2% per year. Perfect isolation of the malignant B-cell population from a surgical biopsy is a significant challenge, masking important FL biology, such as immune checkpoint coexpression patterns. To resolve the underlying transcriptional networks of follicular B-cell lymphomas, we analyzed the transcriptomes of 34 188 cells derived from 6 primary FL tumors. For each tumor, we identified normal immune subpopulations and malignant B cells, based on gene expression. We used multicolor flow cytometry analysis of the same tumors to confirm our assignments of cellular lineages and validate our predictions of expressed proteins. Comparison of gene expression between matched malignant and normal B cells from the same patient revealed tumor-specific features. Malignant B cells exhibited restricted immunoglobulin (Ig) light chain expression (either Igκ or Igλ), as well the expected upregulation of the BCL2 gene, but also downregulation of the FCER2, CD52, and major histocompatibility complex class II genes. By analyzing thousands of individual cells per patient tumor, we identified the mosaic of malignant B-cell subclones that coexist within a FL and examined the characteristics of tumor-infiltrating T cells. We identified genes coexpressed with immune checkpoint molecules, such as CEBPA and B2M in regulatory T (Treg) cells, providing a better understanding of the gene networks involved in immune regulation. In summary, parallel measurement of single-cell expression in thousands of tumor cells and tumor-infiltrating lymphocytes can be used to obtain a systems-level view of the tumor microenvironment and identify new avenues for therapeutic development.


Subject(s)
Lymphoma, B-Cell/genetics , Lymphoma, Follicular/genetics , T-Lymphocytes, Regulatory/cytology , Biopsy , CCAAT-Enhancer-Binding Proteins/genetics , CD4-Positive T-Lymphocytes/cytology , CD52 Antigen/genetics , Cell Lineage , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/cytology , Histocompatibility Antigens Class II/metabolism , Humans , Immune System , Immunoglobulin G , Lectins, C-Type/genetics , Leukocytes, Mononuclear/cytology , Lymphoma, B-Cell/blood , Lymphoma, Follicular/blood , Palatine Tonsil/metabolism , Receptors, IgE/genetics , Sequence Analysis, RNA , Transcriptome , Tumor Microenvironment , beta 2-Microglobulin/genetics
16.
Comput Phys Commun ; 2602021 Mar.
Article in English | MEDLINE | ID: mdl-33716309

ABSTRACT

Inverse Ising inference is a method for inferring the coupling parameters of a Potts/Ising model based on observed site-covariation, which has found important applications in protein physics for detecting interactions between residues in protein families. We introduce Mi3-GPU ("mee-three", for MCMC Inverse Ising Inference) software for solving the inverse Ising problem for protein-sequence datasets with few analytic approximations, by parallel Markov-Chain Monte-Carlo sampling on GPUs. We also provide tools for analysis and preparation of protein-family Multiple Sequence Alignments (MSAs) to account for finite-sampling issues, which are a major source of error or bias in inverse Ising inference. Our method is "generative" in the sense that the inferred model can be used to generate synthetic MSAs whose mutational statistics (marginals) can be verified to match the dataset MSA statistics up to the limits imposed by the effects of finite sampling. Our GPU implementation enables the construction of models which reproduce the covariation patterns of the observed MSA with a precision that is not possible with more approximate methods. The main components of our method are a GPU-optimized algorithm to greatly accelerate MCMC sampling, combined with a multi-step Quasi-Newton parameter-update scheme using a "Zwanzig reweighting" technique. We demonstrate the ability of this software to produce generative models on typical protein family datasets for sequence lengths L ~ 300 with 21 residue types with tens of millions of inferred parameters in short running times.

17.
Proc Natl Acad Sci U S A ; 115(39): E9153-E9161, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30201728

ABSTRACT

In vivo delivery of antigen-encoding mRNA is a promising approach to personalized cancer treatment. The therapeutic efficacy of mRNA vaccines is contingent on safe and efficient gene delivery, biological stability of the mRNA, and the immunological properties of the vaccine. Here we describe the development and evaluation of a versatile and highly efficient mRNA vaccine-delivery system that employs charge-altering releasable transporters (CARTs) to deliver antigen-coding mRNA to antigen-presenting cells (APCs). We demonstrate in human peripheral blood mononuclear cells that CART vaccines can activate a robust antigen-specific immune response against mRNA-encoded viral epitopes. In an established mouse model, we demonstrate that CARTs preferentially target professional APCs in secondary lymphoid organs upon i.v. injections and target local APCs upon s.c. injection. Finally, we show that CARTs coformulated with mRNA and a Toll-like receptor ligand simultaneously transfect and activate target cells to generate an immune response that can treat and cure mice with large, established tumors.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Immunity, Cellular , Neoplasms, Experimental/therapy , RNA, Messenger/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Vaccination , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/pathology , Antigens, Neoplasm/genetics , Cancer Vaccines/genetics , Cancer Vaccines/pharmacology , Cell Line, Tumor , Female , HeLa Cells , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , RNA, Messenger/genetics , RNA, Messenger/pharmacology , T-Lymphocytes/pathology
18.
Biophys J ; 119(6): 1226-1238, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32877664

ABSTRACT

We report the free-energy landscape and thermodynamics of the protein-protein association responsible for the drug-induced multimerization of HIV-1 integrase (IN). Allosteric HIV-1 integrase inhibitors promote aberrant IN multimerization by bridging IN-IN intermolecular interactions. However, the thermodynamic driving forces and kinetics of the multimerization remain largely unknown. Here, we explore the early steps in the IN multimerization by using umbrella sampling and unbiased molecular dynamics simulations in explicit solvent. In direct simulations, the two initially separated dimers spontaneously associate to form near-native complexes that resemble the crystal structure of the aberrant tetramer. Most strikingly, the effective interaction of the protein-protein association is very short-ranged: the two dimers associate rapidly within tens of nanoseconds when their binding surfaces are separated by d ≤ 4.3 Å (less than two water diameters). Beyond this distance, the oligomerization kinetics appears to be diffusion controlled with a much longer association time. The free-energy profile also captured the crucial role of allosteric IN inhibitors in promoting multimerization and explained why several C-terminal domain mutations are remarkably resistant to the drug-induced multimerization. The results also show that at small separation, the protein-protein binding process contains two consecutive phases with distinct thermodynamic signatures. First, interprotein water molecules are expelled to the bulk, resulting in a small increase in entropy, as the solvent entropy gain from the water release is nearly cancelled by the loss of side-chain entropies as the two proteins approach each other. At shorter distances, the two dry binding surfaces adapt to each other to optimize their interaction energy at the expense of further protein configurational entropy loss. Although the binding interfaces feature clusters of hydrophobic residues, overall, the protein-protein association in this system is driven by enthalpy and opposed by entropy.


Subject(s)
Molecular Dynamics Simulation , Proteins , Entropy , Protein Binding , Thermodynamics
19.
N Engl J Med ; 377(26): 2531-2544, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29226797

ABSTRACT

BACKGROUND: In a phase 1 trial, axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, showed efficacy in patients with refractory large B-cell lymphoma after the failure of conventional therapy. METHODS: In this multicenter, phase 2 trial, we enrolled 111 patients with diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, or transformed follicular lymphoma who had refractory disease despite undergoing recommended prior therapy. Patients received a target dose of 2×106 anti-CD19 CAR T cells per kilogram of body weight after receiving a conditioning regimen of low-dose cyclophosphamide and fludarabine. The primary end point was the rate of objective response (calculated as the combined rates of complete response and partial response). Secondary end points included overall survival, safety, and biomarker assessments. RESULTS: Among the 111 patients who were enrolled, axi-cel was successfully manufactured for 110 (99%) and administered to 101 (91%). The objective response rate was 82%, and the complete response rate was 54%.With a median follow-up of 15.4 months, 42% of the patients continued to have a response, with 40% continuing to have a complete response. The overall rate of survival at 18 months was 52%. The most common adverse events of grade 3 or higher during treatment were neutropenia (in 78% of the patients), anemia (in 43%), and thrombocytopenia (in 38%). Grade 3 or higher cytokine release syndrome and neurologic events occurred in 13% and 28% of the patients, respectively. Three of the patients died during treatment. Higher CAR T-cell levels in blood were associated with response. CONCLUSIONS: In this multicenter study, patients with refractory large B-cell lymphoma who received CAR T-cell therapy with axi-cel had high levels of durable response, with a safety profile that included myelosuppression, the cytokine release syndrome, and neurologic events. (Funded by Kite Pharma and the Leukemia and Lymphoma Society Therapy Acceleration Program; ZUMA-1 ClinicalTrials.gov number, NCT02348216 .).


Subject(s)
Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse/therapy , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/transplantation , Adult , Aged , Antigens, CD19 , Biomarkers/blood , Disease-Free Survival , Female , Humans , Interleukins/blood , Lymphoma, Large B-Cell, Diffuse/mortality , Male , Middle Aged , Nervous System Diseases/chemically induced , Neutropenia/chemically induced , Receptors, Antigen, T-Cell/blood , Survival Rate , T-Lymphocytes/immunology , Young Adult
20.
J Comput Chem ; 41(1): 56-68, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31621932

ABSTRACT

We propose a free energy calculation method for receptor-ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host-guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein-ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.


Subject(s)
Molecular Dynamics Simulation , Muramidase/chemistry , Phenols/chemistry , Thermodynamics , Binding Sites , Ligands , Muramidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL