Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Article in English | MEDLINE | ID: mdl-38228910

ABSTRACT

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Diterpenes , Drug Resistance, Neoplasm , Epoxy Compounds , Hedgehog Proteins , Hepatocyte Nuclear Factor 1-alpha , Lung Neoplasms , Paclitaxel , Phenanthrenes , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Humans , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Hedgehog Proteins/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Animals , Cell Line, Tumor , Signal Transduction/drug effects , Mice, Nude , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Mice , Mice, Inbred BALB C , A549 Cells
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339062

ABSTRACT

Bladder cancer, the most common malignancy of the urinary tract, has a poor overall survival rate when the tumor becomes muscle invasive. The discovery and evaluation of new alternative medications targeting high-grade muscle invasive bladder cancer (MIBC) are of tremendous importance in reducing bladder cancer mortality. Isorhapontigenin (ISO), a stilbene derivative from the Chinese herb Gnetum cleistostachyum, exhibits a strong anti-cancer effect on MIBCs. Here, we report the whole transcriptome profiling of ISO-treated human bladder cancer T24 cells. A total of 1047 differentially expressed genes (DEGs) were identified, including 596 downregulated and 451 upregulated genes. Functional annotation and pathway analysis revealed that ISO treatment induced massive changes in gene expression associated with cell movement, migration, invasion, metabolism, proliferation, and angiogenesis. Additionally, ISO treatment-activated genes involved in the inflammatory response but repressed genes involved in hypoxia signaling, glycolysis, the actin cytoskeleton, and the tumor microenvironment. In summary, our whole transcriptome analysis demonstrated a shift in metabolism and altered actin cytoskeleton in ISO-treated T24 cells, which subsequently contribute to tumor microenvironment remodeling that suppresses tumor growth and progression.


Subject(s)
Stilbenes , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Stilbenes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Transcriptome , Tumor Microenvironment
3.
J Neurosci ; 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35970564

ABSTRACT

The mitochondrial anchor syntaphilin (SNPH) is a key mitochondrial protein normally expressed in axons to maintain neuronal health by positioning mitochondria along axons for metabolic needs. However, in 2019 we discovered a novel form of excitotoxicity that results when SNPH is misplaced into neuronal dendrites in disease models. A key unanswered question about this SNPH excitotoxicity is the pathologic molecules that trigger misplacement or intrusion of SNPH into dendrites. Here, we identified two different classes of pathologic molecules that interact to trigger dendritic SNPH intrusion. Using primary hippocampal neuronal cultures from mice of either sex, we demonstrated that the pro-inflammatory cytokine IL-1ß interacts with NMDA to trigger SNPH intrusion into dendrites. First, IL-1ß and NMDA each individually triggers dendritic SNPH intrusion. Second, IL-1ß and NMDA do not act independently but interact. Thus, blocking NMDAR by the antagonist MK-801 blocks IL-1ß from triggering dendritic SNPH intrusion. Further, de-coupling the known interaction between IL-1ß and NMDAR by tyrosine inhibitors prevents either IL-1ß or NMDA from triggering dendritic SNPH intrusion. Third, neuronal toxicity caused by IL-1ß or NMDA are strongly ameliorated in SNPH-/- neurons. Taken together, we hypothesize that the known bipartite IL-1ß/NMDAR crosstalk converges to trigger misplacement of SNPH in dendrites as a final common pathway to cause neurodegeneration. Targeting dendritic SNPH in this novel tripartite IL-1ß/NMDAR/SNPH interaction could be a strategic downstream locus for ameliorating neurotoxicity in inflammatory diseases.SIGNIFICANCE STATEMENTThe mitochondrial anchor Syntaphilin (SNPH) is a key mitochondrial protein normally expressed specifically in healthy axons to help position mitochondria along axons to match metabolic needs. In 2019, we discovered that misplacement of SNPH into neuronal dendrites causes a novel form of excitotoxicity in rodent models of multiple sclerosis. A key unanswered question about this new form of dendritic SNPH toxicity concerns pathologic molecules that trigger toxic misplacement of SNPH into dendrites. Here we identified two major categories of pathologic molecules, the pro-inflammatory cytokines and NMDA, that interact and converge to trigger toxic misplacement of SNPH into dendrites. We propose that dendritic mitochondrial anchor provides a novel, single common target for ameliorating diverse inflammatory and excitatory injuries in neurodegenerative diseases.

4.
J Infect Dis ; 226(5): 797-807, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35385875

ABSTRACT

BACKGROUND: The study objective was to evaluate 2- and 3-dose coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness (VE) in preventing COVID-19 hospitalization among adult solid organ transplant (SOT) recipients. METHODS: We conducted a 21-site case-control analysis of 10 425 adults hospitalized in March to December 2021. Cases were hospitalized with COVID-19; controls were hospitalized for an alternative diagnosis (severe acute respiratory syndrome coronavirus 2-negative). Participants were classified as follows: SOT recipient (n = 440), other immunocompromising condition (n = 1684), or immunocompetent (n = 8301). The VE against COVID-19-associated hospitalization was calculated as 1-adjusted odds ratio of prior vaccination among cases compared with controls. RESULTS: Among SOT recipients, VE was 29% (95% confidence interval [CI], -19% to 58%) for 2 doses and 77% (95% CI, 48% to 90%) for 3 doses. Among patients with other immunocompromising conditions, VE was 72% (95% CI, 64% to 79%) for 2 doses and 92% (95% CI, 85% to 95%) for 3 doses. Among immunocompetent patients, VE was 88% (95% CI, 87% to 90%) for 2 doses and 96% (95% CI, 83% to 99%) for 3 doses. CONCLUSIONS: Effectiveness of COVID-19 mRNA vaccines was lower for SOT recipients than immunocompetent adults and those with other immunocompromising conditions. Among SOT recipients, vaccination with 3 doses of an mRNA vaccine led to substantially greater protection than 2 doses.


Subject(s)
COVID-19 , Organ Transplantation , Adult , COVID-19/prevention & control , Hospitalization , Humans , Organ Transplantation/adverse effects , RNA, Messenger , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
5.
Rep Pract Oncol Radiother ; 27(2): 352-359, 2022.
Article in English | MEDLINE | ID: mdl-36299387

ABSTRACT

Background: This technical note aims to verify the hippocampus and adjacent organs at risk (OARs) sparing ability of an improved beam arrangement, namely hybrid split-arc partial-field volumetric modulated arc therapy (VMAT) (Hsapf-VMAT) during whole brain radiation therapy (WBRT). Materials and methods: Computed tomography simulation images of 22 patients with brain metastases were retrieved in this retrospective planning study. The hippocampus was manually delineated according to the criterion of RTOG 0933. Plans delivering 30 Gy in 10 fractions were generated for each patient using split-arc partial-field VMAT (sapf-VMAT) and Hsapf-VMAT. The sapf-VMAT plans consisted of 4 arc fields of 179.9° each with reduced field size. The Hsapf-VMAT consisted of 4 arc fields similar to sapf-VMAT in addition to 2 lateral opposing static fields. Statistical comparisons between treatment plans of both techniques were performed using the paired t-test at 5% level significance. Results: The results demonstrated that Hsapf-VMAT can achieve superior dose sparing in hippocampus which is comparable to sapf-VMAT (p > 0.05). In both eyes, Hsapf-VMAT had significantly lower Dmean and Dmax compared to sapf-VMAT (p < 0.005). Decrease in Dmax of both lenses using Hsapf-VMAT (p < 0.005) were statistically significant when compared to sapf-VMAT. Hsapf-VMAT demonstrated significant reduction of Dmean and Dmedian to the optic nerves (p < 0.05). Whole brain planning target volume (PTV) coverage was not compromised in both techniques. Conclusion: The present study adopts a hybrid technique, namely Hsapf-VMAT, for hippocampal sparing WBRT. Hsapf-VMAT can achieve promising dose reduction to the hippocampus, both eyes and lenses. Therefore, Hsapf-VMAT can be considered an improved version of sapf-VMAT.

6.
BMC Med Educ ; 21(1): 564, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749735

ABSTRACT

BACKGROUND: Due to the role expansion of radiotherapists in dosimetric aspect, radiotherapists have taken up organs at risk (OARs) contouring work in many clinical settings. However, training of newly qualified radiotherapists in OARs contouring can be time consuming, it may also cause extra burden to experienced radiotherapists. As web-based open-source radiotherapy delineation software (WORDS) has become more readily available, it has provided a free and interactive alternative to conventional one-to-one coaching approach during OARs contouring training. The present study aims to evaluate the effectiveness of WORDS in training OARs contouring skills of newly qualified radiotherapists, compared to those trained by conventional one-to-one coaching approach. METHODS: Nine newly qualified radiotherapists (licensed in 2017 - 2018) were enrolled to the conventional one-to-one coaching group (control group), while 11 newly qualified radiotherapists (licensed in 2019 - 2021) were assigned to WORDS training group (measured group). Ten OARs were selected to be contoured in this 3-phases quantitative study. Participants were required to undergo phase 1 OARs contouring in the beginning of the training session. Afterwards, conventional one-to-one training or WORDS training session was provided to participants according to their assigned group. Then the participants did phase 2 and 3 OARs contouring which were separated 1 week apart. Phase 1 - 3 OARs contouring aimed to demonstrate participants' pre-training OARs contouring ability, post-training OARs contouring ability and knowledge retention after one-week interval respectively using either training approach. To prevent bias, the computed tomography dataset for OARs contouring in each phase were different. Variations in the contouring scores for the selected OARs were evaluated between 3 phases using Kruskal-Wallis tests with Dunn tests for pairwise comparisons. Variations in the contouring scores between control and measured group in phase 1 - 3 contouring were analyzed using Wilcoxon signed-rank test. A p-value < 0.05 was considered to be statistically significant. RESULTS: In both control group and measured group, significant improvement (p < 0.05) in phase 2 and 3 contouring scores have been observed comparing to phase 1 contouring scores. In comparison of contouring scores between control group and measured group, no significant differences (p > 0.05) were observed in all OARs between both groups. CONCLUSIONS: The results in this study have demonstrated that the outcome of OARs contouring training using WORDS is comparable to the conventional training approach. In addition, WORDS can offer flexibility to newly qualified radiotherapists to practice OARs contouring at will, as well as reduce staff training burden of experienced radiotherapists.


Subject(s)
Mentoring , Organs at Risk , Humans , Internet , Radiotherapy Planning, Computer-Assisted , Software
7.
J Neurophysiol ; 123(5): 1979-1994, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32292110

ABSTRACT

We perceive objects as permanent and stable despite frequent occlusions and eye movements, but their representation in the visual cortex is neither permanent nor stable. Feature selective cells respond only as long as objects are visible, and their responses depend on eye position. We explored the hypothesis that the system maintains object pointers that provide permanence and stability. Pointers should send facilitatory signals to the feature cells of an object, and these signals should persist across temporary occlusions and remap to compensate for image displacements caused by saccades. Here, we searched for such signals in monkey areas V2 and V4 (Macaca mulatta). We developed a new paradigm in which a monkey freely inspects an array of objects in search for reward while some of the objects are being occluded temporarily by opaque drifting strips. Two types of objects were used to manipulate attention. The results were as follows. 1) Eye movements indicated a robust representation of location and type of the occluded objects; 2) in neurons of V4, but not V2, occluded objects produced elevated activity relative to blank condition; 3) the elevation of activity was reduced for objects that had been fixated immediately before the current fixation ('inhibition of return'); and 4) when attended, or when the target of a saccade, visible objects produced enhanced responses in V4, but occluded objects produced no modulation. Although results 1-3 confirm the hypothesis, the absence of modulation under occlusion is not consistent. Further experiments are needed to resolve this discrepancy.NEW & NOTEWORTHY The way we perceive objects as permanent contrasts with the short-lived responses of visual cortical neurons. A theory postulates pointers that give objects continuity, predicting a class of neurons that respond not only to visual objects but also when an occluded object moves into their receptive field. Here, we tested this theory with a novel paradigm in which a monkey freely scans an array of objects while some of them are transiently occluded.


Subject(s)
Pattern Recognition, Visual/physiology , Perceptual Masking/physiology , Space Perception/physiology , Visual Cortex/physiology , Animals , Attention/physiology , Behavior, Animal/physiology , Macaca mulatta , Male , Patch-Clamp Techniques
8.
Angew Chem Int Ed Engl ; 58(17): 5557-5561, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30779275

ABSTRACT

The lithium-sulfur battery is an attractive option for next-generation energy storage owing to its much higher theoretical energy density than state-of-the-art lithium-ion batteries. However, the massive volume changes of the sulfur cathode and the uncontrollable deposition of Li2 S2 /Li2 S significantly deteriorate cycling life and increase voltage polarization. To address these challenges, we develop an ϵ-caprolactam/acetamide based eutectic-solvent electrolyte, which can dissolve all lithium polysulfides and lithium sulfide (Li2 S8 -Li2 S). With this new electrolyte, high specific capacity (1360 mAh g-1 ) and reasonable cycling stability are achieved. Moreover, in contrast to conventional ether electrolyte with a low flash point (ca. 2 °C), such low-cost eutectic-solvent-based electrolyte is difficult to ignite, and thus can dramatically enhance battery safety. This research provides a new approach to improving lithium-sulfur batteries in aspects of both safety and performance.

9.
J Neurooncol ; 136(2): 255-262, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29143921

ABSTRACT

Intracellular pH (pHi) plays an important role in the maintenance of normal cell function, and is maintained within a narrow range by the activity of transporters located at the plasma membrane. Modulation of tumor pHi may influence proliferation, apoptosis, chemotherapy resistance, and thermosensitivity. Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is dependent on cellular pH. Amine and amide concentration-independent detection (AACID) is a recently developed CEST contrast method that is intracellular pH (pHi) weighted. Dichloroacetate (DCA) can alter tumor pHi by inhibiting the enzyme pyruvate dehydrogenase kinase causing reduced lactate (increasing pHi), or by decreasing the expression of monocarboxylate transporters and vacuolar ATPase leading to reduced pHi. Since the net in vivo effect of DCA on pHi is difficult to predict, the purpose of this study was to quantify the magnitude of acute pHi change in glioblastoma after a single DCA injection using AACID CEST MRI. Using a 9.4T MRI scanner, CEST spectra were acquired in six mice approximately 14 days after implanting 105 U87 human glioblastoma multiforme (GBM) cells in the brain, before and after intravenous injection of DCA (dose: 200 mg/kg). Three additional mice received only phosphate buffered saline (PBS) injection and were studied as controls. Repeated measures t test was used to compare AACID changes in tumor and contralateral tissue regions of interest. One hour after DCA injection there was a significant increase in tumor AACID level by 0.04 ± 0.01 corresponding to a 0.16 decrease in pHi, and no change in AACID in contralateral tissue. Inspection of AACID maps following PBS injection showed no differences. The use of DCA to induce a tumor specific pH change detectable by AACID CEST MRI is consistent with previous studies that have shown similar effects for lonidamine and topiramate. This study demonstrates that a single dose of DCA can be used as a pharmacological challenge to induced rapid tumor intracellular acidification.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Dichloroacetic Acid/administration & dosage , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Magnetic Resonance Imaging/methods , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Contrast Media , Dichloroacetic Acid/metabolism , Hydrogen-Ion Concentration , Mice
10.
Semin Dial ; 31(3): 300-304, 2018 05.
Article in English | MEDLINE | ID: mdl-29265477

ABSTRACT

The vast majority of maintenance dialysis patients suffer from poor long-term survival rates and lower levels of health-related quality of life. However, home hemodialysis is a historically significant dialysis modality that has been associated with favorable outcomes as well as greater patient autonomy and control, yet only represents a small minority of the total dialysis performed in the United States. Some potential disadvantages of home hemodialysis include vascular access complications, infection-related hospitalizations, patient fatigue, and attrition. In addition, current barriers and challenges in expanding the utilization of this modality include limited patient and provider education and technical expertise. Here we report a 65-year old male with end-stage renal disease due to Alport's syndrome who has undergone 35 years of uninterrupted thrice-weekly home hemodialysis (ie, every Sunday, Tuesday, and Thursday evening, each session lasting 3 to 3» hours in length) using a conventional hemodialysis machine who has maintained a high functional status allowing him to work 6-8 hours per day. The patient has been able to liberalize his dietary and fluid intake while only requiring 3-4 liters of ultrafiltration per treatment, despite having absence of residual kidney function. Through this case of extraordinary longevity and outcomes after 35 years of dialysis and a review of the literature, we illustrate the history of home hemodialysis, its significant clinical and psychosocial advantages, as well as the barriers that hinder its widespread adaptation.


Subject(s)
Hemodialysis, Home/methods , Kidney Failure, Chronic/therapy , Nephritis, Hereditary/complications , Quality of Life , Aged , Asian , Disease Progression , Hemodialysis, Home/adverse effects , Hemodialysis, Home/psychology , Humans , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/physiopathology , Male , Nephritis, Hereditary/diagnosis , Risk Assessment , Survivors , Treatment Outcome
11.
Int J Clin Oncol ; 23(5): 812-819, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29749579

ABSTRACT

Glioblastoma is an aggressive brain cancer that is very difficult to treat. Clinically, it is important to be able to distinguish aggressive from non-aggressive brain tumors. Previous studies have shown that some drugs can induce a rapid change in intracellular pH that could help to identify aggressive cancer. The sodium proton exchanger (NHE1) plays a significant role in maintaining pH balance in the tumor microenvironment. Cariporide is a sodium proton exchange inhibitor that is well tolerated by humans in cardiac applications. We hypothesized that cariporide could selectively acidify brain tumors. The purpose of this study was to determine whether amine/amide concentration-independent detection (AACID) chemical exchange saturation transfer (CEST) MRI measurement of tumor pHi could detect acidification after cariporide injection. Using a 9.4T MRI scanner, CEST spectra were acquired in six mice approximately 14 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after administration of cariporide (dose: 6 mg/kg) by intraperitoneal injection. Three additional mice were studied as controls and received only vehicle injection (DMSO + PBS). Repeated measures t test was used to examine changes in tumor and contralateral tissue regions of interest. Two hours after cariporide injection, there was a significant 0.12 ± 0.03 increase in tumor AACID value corresponding to a 0.48 decrease in pHi and no change in AACID value in contralateral tissue. A small but significant increase of 0.04 ± 0.017 in tumor AACID value was also observed following vehicle injection. This study demonstrates that acute CEST MRI contrast changes, indicative of intracellular acidification, after administration of cariporide could help localize glioblastoma.


Subject(s)
Acidosis/pathology , Anti-Arrhythmia Agents/toxicity , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Guanidines/toxicity , Sulfones/toxicity , Acidosis/chemically induced , Acidosis/diagnostic imaging , Animals , Female , Hydrogen-Ion Concentration , Magnetic Resonance Imaging , Mice , Tumor Microenvironment
12.
J Neurophysiol ; 118(2): 1344-1354, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28615334

ABSTRACT

The common marmoset (Callithrix jacchus) is a small New World primate that is becoming increasingly popular in the neurosciences as an animal model of preclinical human disease. With several major disorders characterized by alterations in neural white matter (e.g., multiple sclerosis, Alzheimer's disease, schizophrenia), proposed to be transgenically modeled using marmosets, the ability to isolate and characterize reliably major white matter fiber tracts with MRI will be of use for evaluating structural brain changes related to disease processes and symptomatology. Here, we propose protocols for isolating major white matter fiber tracts in the common marmoset using in vivo ultrahigh-field MRI (9.4T) diffusion-weighted imaging (DWI) data. With the use of a high angular-resolution DWI (256 diffusion-encoding directions) sequence, collected on four anesthetized marmosets, we provide guidelines for manually drawing fiber-tracking regions of interest, based on easily identified anatomical landmarks in DWI native space. These fiber-tract isolation protocols are expected to be experimentally useful for visualization and quantification of individual white matter fiber tracts in both control and experimental groups of marmosets (e.g., transgenic models). As disease models in the marmoset advance, the determination of how macroscopic white matter anatomy is altered as a function of disease state will be relevant in bridging the existing translational gap between preclinical rodent models and human patients.NEW & NOTEWORTHY Although significant progress has been made in mapping white matter connections in the marmoset brain using ex vivo tracing techniques, the application of in vivo virtual dissection of major white matter fiber tracts has been established by few studies in the marmoset literature. Here, we demonstrate the feasibility of whole-brain diffusion-weighted tractography in anesthetized marmosets at ultrahigh-field MRI (9.4T) and propose protocols for isolating nine major white matter fiber tracts in the marmoset brain.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Animals , Brain/physiology , Callithrix , Diffusion Tensor Imaging/standards , Male , Nerve Net/diagnostic imaging , Sensitivity and Specificity , White Matter/diagnostic imaging
13.
Appl Environ Microbiol ; 82(10): 2988-2999, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26969703

ABSTRACT

UNLABELLED: The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nanosurgical sectioning method in which a stiff diamond AFM tip was used to cut an individual spore, exposing its internal structure, and a soft AFM tip was used to image and characterize the spore interior on the nanometer scale. We observed that the elastic modulus and adhesion force, including their thermal responses at elevated temperatures, varied significantly in different regions of the spore section. Our AFM images indicated that the peptidoglycan (PG) cortex of Bacillus anthracis spores consisted of rod-like nanometer-sized structures that are oriented in the direction perpendicular to the spore surface. Our findings may shed light on the spore architecture and properties. IMPORTANCE: A nanosurgical AFM method was developed that can be used to probe the structure and properties of the spore interior. The previously unknown ultrastructure of the PG cortex of Bacillus anthracis spores was observed to consist of nanometer-sized rod-like structures that are oriented in the direction perpendicular to the spore surface. The variations in the nanomechanical properties of the spore section were largely correlated with its chemical composition. Different components of the spore materials showed different thermal responses at elevated temperatures.


Subject(s)
Bacillus anthracis/ultrastructure , Biophysical Phenomena , Mechanical Phenomena , Microscopy, Atomic Force , Spores/ultrastructure
14.
J Neurooncol ; 130(3): 465-472, 2016 12.
Article in English | MEDLINE | ID: mdl-27613534

ABSTRACT

Reversal of the intracellular/extracellular pH gradient is a hallmark of malignant tumors and is an important consideration in evaluating tumor growth potential and the effectiveness of anticancer therapies. Glioblastoma multiforme (GBM) brain tumors have increased expression of the carbonic anhydrase (CA) isozymes CAII, CAIX and CAXII that contribute to the altered regulation of intracellular pH (pHi). The anti-epileptic drug topiramate (TPM) inhibits CA action and may acidify the tumor intracellular compartment. In-vivo detection of acute tumor acidification could aid in cancer diagnosis and monitoring treatment response. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has been used to measure tissue pH. Using a recently developed CEST-MRI method called amine/amide concentration independent detection (AACID), we have previously shown intracellular acidification caused by single dose of lonidamine. The current study aims to evaluate the intracellular acidification induced by a single dose of the clinically approved drug TPM. Brain tumors were induced in NU/NU mice by injecting 105 U87 human glioblastoma multiforme cells into the right frontal lobe. Using a 9.4T MRI scanner AACID measurements were acquired, before and after administration of TPM (dose: 120 mg/kg, intraperitoneal), 15 ± 2 days after tumor cell implantation. TPM administration induced acute intracellular acidification (average ± SD: baseline AACID = 1.14 ± 0.05; post AACID = 1.19 ± 0.05, paired ttest p = 0.02) in implanted brain tumors. In contrast, contralateral tissue showed no change in AACID value. These results suggest that topiramate can rapidly induce a tumor specific physiological change detectable by AACID CEST. This pH challenge paradigm could be exploited to aid in tumor detection and monitoring treatment response.


Subject(s)
Brain Neoplasms/pathology , Carbonic Anhydrases/metabolism , Fructose/analogs & derivatives , Glioblastoma/pathology , Intracellular Space/drug effects , Neuroprotective Agents/pharmacology , Animals , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Fructose/pharmacology , Glioblastoma/diagnostic imaging , Humans , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Nude , Topiramate , Xenograft Model Antitumor Assays
15.
NMR Biomed ; 28(5): 566-75, 2015 May.
Article in English | MEDLINE | ID: mdl-25808190

ABSTRACT

Increased lactate production through glycolysis in aerobic conditions is a hallmark of cancer. Some anticancer drugs have been designed to exploit elevated glycolysis in cancer cells. For example, lonidamine (LND) inhibits lactate transport, leading to intracellular acidification in cancer cells. Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is dependent on intracellular pH. Amine and amide concentration-independent detection (AACID) and apparent amide proton transfer (APT*) represent two recently developed CEST contrast parameters that are sensitive to pH. The goal of this study was to compare the sensitivity of AACID and APT* for the detection of tumor-selective acidification after LND injection. Using a 9.4-T MRI scanner, CEST data were acquired in mice approximately 14 days after the implantation of 10(5) U87 human glioblastoma multiforme (GBM) cells in the brain, before and after the administration of LND (dose, 50 or 100 mg/kg). Significant dose-dependent LND-induced changes in the measured CEST parameters were detected in brain regions spatially correlated with implanted tumors. Importantly, no changes were observed in T1- and T2-weighted images acquired before and after LND treatment. The AACID and APT* contrast measured before and after LND injection exhibited similar pH sensitivity. Interestingly, LND-induced contrast maps showed increased heterogeneity compared with pre-injection CEST maps. These results demonstrate that CEST contrast changes after the administration of LND could help to localize brain cancer and monitor tumor response to chemotherapy within 1 h of treatment. The LND CEST experiment uses an anticancer drug to induce a metabolic change detectable by endogenous MRI contrast, and therefore represents a unique cancer detection paradigm which differs from other current molecular imaging techniques that require the injection of an imaging contrast agent or tracer.


Subject(s)
Brain Neoplasms/chemistry , Brain Neoplasms/diagnosis , Indazoles/therapeutic use , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Animals , Antineoplastic Agents/therapeutic use , Contrast Media , Humans , Hydrogen-Ion Concentration , Image Interpretation, Computer-Assisted/methods , Mice , Mice, Nude , Reproducibility of Results , Sensitivity and Specificity , Tumor Cells, Cultured
16.
Vet Surg ; 44(1): 70-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24708556

ABSTRACT

OBJECTIVE: To describe and compare a large population of dogs that had pancarpal arthrodesis (PCA) using either a hybrid dynamic compression plate (HDCP) or a CastLess Plate (CLP). STUDY DESIGN: Multicenter, retrospective, cohort study. ANIMALS: Dogs (n = 240; 261 PCA). METHODS: Medical records (2000-2012) from 12 UK orthopedic centers were reviewed for dogs that had PCA to document signalment, diagnosis, arthrodesis method, and complication rates. Follow-up data were used to compare outcome (lameness evaluation and radiographic healing) after use of HDCP and CLP plates. RESULTS: PCA was performed with HDCP in 125 cases, CLP in 105, and by other techniques in 31. Carpal hyperextension injury was the most common diagnosis in HDCP and CLP groups. Surgical site infection (18.3%) was the most common postoperative complication. There was no difference in intra- (11% HDCP, 21% CLP) or postoperative (34% HDCP, 41% CLP) complication rates. Use of external coaptation did not affect postoperative complication rates or outcome. External coaptation related complications occurred in 32% HDCP and 18% CLP (P = .02). At median follow-up, most dogs were classified as having no or mild lameness (73% HDCP, 83% CLP) and there was radiographic healing in 40% HDCP and 46% CLP (P = .8) cases. CONCLUSIONS: CLP and HDCP may both be used successfully to achieve pancarpal arthrodesis. Adjunctive external coaptation does not appear to have a measurable clinical benefit but is associated with morbidity.


Subject(s)
Arthrodesis/veterinary , Bone Plates/veterinary , Carpus, Animal/surgery , Animals , Cohort Studies , Dogs , England , Female , Gait , Male , Postoperative Period , Retrospective Studies , Surgical Wound Infection/veterinary , Surveys and Questionnaires , Wound Healing
17.
Appl Environ Microbiol ; 80(5): 1739-49, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24375142

ABSTRACT

Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.


Subject(s)
Disinfection/methods , Heating/methods , Hot Temperature , Spores, Bacterial/radiation effects , Spores, Bacterial/ultrastructure , Bacillus anthracis , Mechanical Phenomena , Microscopy, Atomic Force
18.
PLoS Biol ; 9(11): e1001194, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22087075

ABSTRACT

Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.


Subject(s)
Acetylcholine/metabolism , Glutamic Acid/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Blotting, Western , Brain , Catecholamines/metabolism , Fluorescent Antibody Technique , In Vitro Techniques , Magnetic Resonance Imaging , Male , Mice , Motor Activity/genetics , Motor Activity/physiology , Polymerase Chain Reaction , Synaptosomes/metabolism , Vesicular Acetylcholine Transport Proteins/genetics
19.
Eur Heart J Open ; 4(1): oead128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38162403

ABSTRACT

Aims: Thoracic aortic aneurysms (TAAs) carry a risk of catastrophic dissection. Current strategies to evaluate this risk entail measuring aortic diameter but do not image medial degeneration, the cause of TAAs. We sought to determine if the advanced magnetic resonance imaging (MRI) acquisition strategy, diffusion tensor imaging (DTI), could delineate medial degeneration in the ascending thoracic aorta. Methods and results: Porcine ascending aortas were subjected to enzyme microinjection, which yielded local aortic medial degeneration. These lesions were detected by DTI, using a 9.4 T MRI scanner, based on tensor disorientation, disrupted diffusion tracts, and altered DTI metrics. High-resolution spatial analysis revealed that fractional anisotropy positively correlated, and mean and radial diffusivity inversely correlated, with smooth muscle cell (SMC) and elastin content (P < 0.001 for all). Ten operatively harvested human ascending aorta samples (mean subject age 61.6 ± 13.3 years, diameter range 29-64 mm) showed medial pathology that was more diffuse and more complex. Nonetheless, DTI metrics within an aorta spatially correlated with SMC, elastin, and, especially, glycosaminoglycan (GAG) content. Moreover, there were inter-individual differences in slice-averaged DTI metrics. Glycosaminoglycan accumulation and elastin degradation were captured by reduced fractional anisotropy (R2 = 0.47, P = 0.043; R2 = 0.76, P = 0.002), with GAG accumulation also captured by increased mean diffusivity (R2 = 0.46, P = 0.045) and increased radial diffusivity (R2 = 0.60, P = 0.015). Conclusion: Ex vivo high-field DTI can detect ascending aorta medial degeneration and can differentiate TAAs in accordance with their histopathology, especially elastin and GAG changes. This non-destructive window into aortic medial microstructure raises prospects for probing the risks of TAAs beyond lumen dimensions.

20.
Oncogene ; 43(12): 899-917, 2024 03.
Article in English | MEDLINE | ID: mdl-38317006

ABSTRACT

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/ß-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.


Subject(s)
Annexin A2 , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Wnt Signaling Pathway/genetics , Esophageal Neoplasms/pathology , Cell Proliferation/genetics , Acetyltransferases/metabolism , Epigenesis, Genetic , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement , Histone Acetyltransferases/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Annexin A2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL