Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Water Sci Technol ; 90(1): 303-313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007321

ABSTRACT

The composition of waste-activated sludge (WAS) is complex, containing a large amount of harmful substances, which pose a threat to the environment and human health. The reduction and resource utilization of sludge has become a development demand in sludge treatment and disposal. Based on the technical bottlenecks in the practical application of direct anaerobic digestion technology, this study adopted two different thermal and thermal-alkali hydrolysis technologies to pretreat sludge. A pilot-scale experiment was conducted to investigate the experimental conditions, parameters, and effects of two hydrolysis technologies. This study showed that the optimal hydrolysis temperature was 70 °C, the hydrolysis effect and pH can reach equilibrium with the hydrolysis retention time was 4-8 h, and the optimal alkali concentration range was 0.0125-0.015 kg NaOH/kg dry-sludge. Thermal-alkali combination treatment greatly improved the performance of methane production, the addition of NaOH increased methane yield by 31.2% than that of 70 °C thermal hydrolysis. The average energy consumption is 75 kWh/m3 80% water-content sludge during the experiment. This study provides a better pretreatment strategy for exploring efficient anaerobic digestion treatment technologies suitable for southern characteristic sewage sludge.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Anaerobiosis , Pilot Projects , Hydrolysis , Waste Disposal, Fluid/methods , Alkalies/chemistry , Hot Temperature , Methane/metabolism , Bioreactors , Sodium Hydroxide/chemistry , Hydrogen-Ion Concentration
2.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Article in English | MEDLINE | ID: mdl-38747953

ABSTRACT

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Subject(s)
Carbon , Sewage , Temperature , Sewage/chemistry , Carbon/chemistry , Waste Disposal, Fluid/methods , Time Factors , Metals, Heavy/chemistry
3.
J Org Chem ; 85(14): 9367-9374, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32578986

ABSTRACT

The dearomatizing spirocyclization of phenolic biarylic ketones using PhI(OCOCF3)2 as oxidant is presented. The reaction affords various cyclohexadienones through C-C bond cleavage under mild conditions. Mechanistic investigations reveal that an exocyclic enol ether acts as the key intermediate in the transformation.

4.
Mol Genet Genomics ; 289(3): 489-99, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24448651

ABSTRACT

Protein-DNA interactions play important roles in many biological processes. To understand the molecular mechanisms of protein-DNA interaction, it is necessary to identify the DNA-binding sites in DNA-binding proteins. In the last decade, computational approaches have been developed to predict protein-DNA-binding sites based solely on protein sequences. In this study, we developed a novel predictor based on support vector machine algorithm coupled with the maximum relevance minimum redundancy method followed by incremental feature selection. We incorporated not only features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure, solvent accessibility, but also five three-dimensional (3D) structural features calculated from PDB data to predict the protein-DNA interaction sites. Feature analysis showed that 3D structural features indeed contributed to the prediction of DNA-binding site and it was demonstrated that the prediction performance was better with 3D structural features than without them. It was also shown via analysis of features from each site that the features of DNA-binding site itself contribute the most to the prediction. Our prediction method may become a useful tool for identifying the DNA-binding sites and the feature analysis described in this paper may provide useful insights for in-depth investigations into the mechanisms of protein-DNA interaction.


Subject(s)
Binding Sites , Computational Biology/methods , DNA-Binding Proteins/chemistry , DNA/chemistry , Support Vector Machine , Algorithms , DNA/metabolism , DNA-Binding Proteins/metabolism , Molecular Conformation , Protein Binding , Reproducibility of Results
5.
Genomics ; 101(1): 20-3, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23000193

ABSTRACT

Genome-wide association (GWA) studies are currently one of the most powerful tools in identifying disease-associated genes or variants. In typical GWA studies, single-nucleotide polymorphisms (SNPs) are often used as genetic makers. Therefore, it is critical to estimate the percentage of genetic variations which can be covered by SNPs through linkage disequilibrium (LD). In this study, we use the concept of haplotype blocks to evaluate the coverage of five SNP sets including the HapMap and four commercial arrays, for every exon in the human genome. We show that although some Chips can reach similar coverage as the HapMap, only about 50% of exons are completely covered by haplotype blocks of HapMap SNPs. We suggest further high-resolution genotyping methods are required, to provide adequate genome-wide power for identifying variants.


Subject(s)
Exons , HapMap Project , Polymorphism, Single Nucleotide , Genome, Human , Genotyping Techniques/standards , Haplotypes , Humans , Linkage Disequilibrium , Quality Control
6.
Environ Sci Pollut Res Int ; 31(13): 19615-19634, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38363502

ABSTRACT

Green innovations are the most critical factor in promoting environmental sustainability worldwide. Trade can speed up the adoption of green innovations by facilitating the transfer of information, skills, and technology. However, trade policy uncertainty can create significant challenges for businesses investing in eco-innovations, leading to increased risk, reduced investment, and slower progress toward sustainable technologies. Recently, a growing number of researchers have shown their interest in finding the factors that can impact green innovations, but none have investigated the influence of trade policy uncertainty on green innovations in the USA and China. In addition, none of the past studies has relied on the nonlinear assumption. This analysis fills these gaps by examining the nonlinear impacts of trade policy uncertainty on eco-innovations in China and the USA over 2000Q1-2021Q4 by employing a nonlinear ARDL model. The finding reveals that a positive shock in trade policy uncertainty results in a decrease in green innovation in the USA and China, while a negative shock in trade policy uncertainty leads to an increase in green innovation in the USA over the long run. The nonlinear models also indicate that a positive shock in trade policy uncertainty harms green innovation in both the USA and China in the short run. The robustness of these results is confirmed by the NQARDL model, which confirms that an upsurge in trade policy uncertainty lowers green innovation in most quantiles in the USA and China in the short and long run. Conversely, negative shocks in trade policy uncertainty stimulate green innovation at most quantiles in both China and the USA, in the short and long run. Thus, policymakers need to consider the potential impact of trade policies on eco-innovations and work to create stable and predictable trade environments that support the growth of renewable technologies and other sustainable solutions.


Subject(s)
Commerce , Investments , Uncertainty , China , Policy , Economic Development , Carbon Dioxide , Renewable Energy
7.
Environ Sci Pollut Res Int ; 30(53): 113313-113322, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37848786

ABSTRACT

In order to reduce environmental deterioration and promote sustainable growth, green innovation-which includes ecologically friendly technology and practices-has become a top priority of policymakers worldwide. This research investigates how formal and informal finance affects green innovation in highly polluted high, middle-, and low-income economies, using data spanning from 2007 to 2021. For analyzing the empirical link between formal finance, informal finance, and green innovation, we have employed the 2SLS and GMM estimation techniques. The primary estimates of the analysis suggest that formal and informal funding methods significantly impact environment-related technologies in high-income and middle- and low-income nations. Moreover, the GDP, carbon emissions, trade openness, human capital, research and development, financial stability, and digital finance are essential factors in promoting environment-related technologies in high-, middle-, and low-income nations, respectively. The policymakers in both groups of countries should foster collaboration between the formal and informal sectors to promote green innovations, which is essential for achieving sustainable development goals.


Subject(s)
Social Conditions , Unionidae , Humans , Animals , Carbon , Income , Informal Sector , Economic Development , Carbon Dioxide , China
8.
Sci Total Environ ; 855: 158648, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36096212

ABSTRACT

Reducing the water content of waste activated sludge (WAS) is critical for sludge treatment and disposal in wastewater treatment plants (WWTPs). In this study, a new combined conditioning processes by using lysozyme (LZM) and free nitrous acid (FNA) were proposed and demonstrated to enhance the dewaterability of WAS. The water content of sludge cake dropped from 82.82 % to 68.42 % (1 h FNA treatment + 1 h LZM treatment) and 69.52 % (6 h FNA treatment + 1 h LZM treatment) with the combined FNA and LZM treatment; and the corresponding capillary suction time (CST) reduction efficiency increased 49.29 % (1 h FNA treatment + 1 h LZM treatment) and 52.98 % (6 h FNA treatment + 1 h LZM treatment). A comprehensive investigation conducted in this study revealed the underlying mechanism of dewaterability improvement lies in the transformations of extracellular polymeric substances (EPS). The combined conditioning led to enhanced hydrophobicity in the sludge, as suggested by FTIR protein secondary structure and interfacial free energy. The reduced zeta potential and the potential barrier indicated the reduction of the repulsive force of sludge particles and the bound water content in the conditioned floc. The hydrophobicity, flow permeability and flocculability were enhanced after combined treatment, leading to the release of bound water.


Subject(s)
Nitrous Acid , Sewage , Sewage/chemistry , Waste Disposal, Fluid , Muramidase , Water/chemistry , Proteins
9.
Sci Total Environ ; 903: 166286, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37586526

ABSTRACT

This study focused on the short- and long-term exposure of pharmaceutical and personal care products (PPCPs) to the partial nitrification process and nitrous oxide emission. The corresponding microbial mechanisms were also explored. The results revealed a concentration-dose effect on the partial nitrification process. Moreover, the PPCP concentration of ≥2 µg/L featured inhibitory effects on the process. The solo effect of PPCP on the partial nitrification process was analyzed through microcosmic experiments, and the results revealed significant variations in PN. A dose-effect relationship existed between the PPCP concentration and N2O emission intensity. After exposure to PPCPs, the N2O emission released during the partial nitrification process was significantly reduced. Different PPCPs featured various effects in mitigating N2O emissions. Low PPCP concentrations led to a reduction in the richness and diversity of microbes, but their community structure remained significantly unchanged. High PPCP concentrations (≥5 µg/L) resulted in increased species richness and diversity, but their microbial community composition was significantly affected. The function prediction and nitrogen metabolic pathway analysis indicated that PPCP exposure led to the inhibition of the ammonia oxidation process. However, all genes encoding denitrification enzymes were upregulated. The microorganisms in the microbial community featured modular structural properties and wide synergistic relationships between genera. This study provides valuable insights into the effect of PPCP exposure on the particle nitrification process and corresponding changes in the microbial community.

10.
Chemosphere ; 335: 139142, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290510

ABSTRACT

Perfluorooctanoic acid (PFOA) as nonbiodegradable organic pollutant, its presence and risks in wastewater treatment system has aroused wide concern. This study investigated the effect and underlying mechanism of PFOA on anaerobic digestion sludge (ADS) dewaterability. Long-term exposure experiments were set up to investigate the effect with various concentration of PFOA dosed. Experimental results suggested that the existence of high concentration PFOA (over 1000 µg/L) could deteriorate ADS dewaterability. The long-term exposure to 100,000 µg/L PFOA of ADS increased specific resistance filtration (SRF) by 81.57%. It was found that PFOA promoted the release of extracellular polymeric substances (EPS), which was strongly associated with sludge dewaterability. The fluorescence analysis revealed that the high PFOA concentration could significantly improve the percentage of protein-like substances and soluble microbial by-product-like content, and then further deteriorated the dewaterability. The FTIR results showed that long-term exposure of PFOA caused loose protein structure in sludge EPS, which led to loose sludge floc structure. The loose sludge floc structure aggravated the deterioration of sludge dewaterability. The solids-water distribution coefficient (Kd) decreased with the increase of initial PFOA concentration. Moreover, PFOA significantly affected microbial community structure. Metabolic function prediction results showed significant decrease of fermentation function exposed to PFOA. This study revealed that the PFOA with high concentration could deteriorated sludge dewaterability, which should be highly concerned.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Caprylates , Proteins , Water/chemistry
11.
Environ Sci Pollut Res Int ; 30(45): 101817-101828, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37659017

ABSTRACT

Maintaining operations in the face of crises like COVID-19 is difficult. Using the stakeholder theory, this study examines the impact of corporate social responsibility (CSR) programs targeting company employees. Their social position and the likelihood of a green economic rebound (GER) are evaluated. Evidence shows that employee-focused CSR activities implemented by tourism boost organizational GER by fostering a more trusting work environment for their staff. Management and non-management staff at Chinese Tourism were polled using a non-probabilistic convenience sample and a 5-point Likert scale. Structured equation modeling was used to conduct structural analyses. Employee-focused CSR is a significant predictor of a firm reputation in the Chinese tourism industry. In addition, it is found that trust inside the organization acts as a go-between. The evidence also supports the hypothesis that a company's rising profile triggers GER. This research delves deeply into the connection between employees' perceptions of a company's employee-focused CSR initiatives, that company's reputation in the community, and employees' general enthusiasm for their job, a group that has been understudied until now. The findings are helpful for tourism management because they show them how to employ employee-focused CSR activities to strengthen connections with internal stakeholders while also using that reputation to shift to a greener way of doing business.


Subject(s)
Commerce , Social Responsibility , Trust , Humans , Asian People , Industry , Organizational Culture
12.
Bioresour Technol ; 378: 128994, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004889

ABSTRACT

Aerobic environments exist widely in wastewater treatment plants (WWTP) and are unfavorable for greenhouse gas nitrous oxide (N2O) reduction. Here, a novel strain Pseudomonas sp. YR02, which can perform N2O reduction under aerobic conditions, was isolated. The successful amplification of four denitrifying genes proved its complete denitrifying ability. The inorganic nitrogen (IN) removal efficiencies (NRE) were >98.0% and intracellular nitrogen and gaseous nitrogen account for 52.6-58.4% and 41.6-47.4% of input nitrogen, respectively. The priority of IN utilization was TAN > NO3--N > NO2--N. The optimal conditions for IN and N2O removal were consistent, except for the C/N ratio, which is 15 and 5 for IN and N2O removal, respectively. The biokinetic constants analysis indicated strain YR02 had high potential to treat high ammonia and dissolved N2O wastewater. Strain YR02 bioaugmentation mitigated 98.7% of N2O emission and improved 32% NRE in WWTP, proving its application potential for N2O mitigation.


Subject(s)
Greenhouse Gases , Nitrous Oxide , Nitrous Oxide/analysis , Denitrification , Pseudomonas , Nitrogen
13.
Chemosphere ; 325: 138378, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906008

ABSTRACT

Adsorption showed advantages in removing phosphorus (P) at low concentrations. Desirable adsorbents should have sufficiently high adsorption capacity and selectivity. In this study, a Ca-La layered double hydroxide (LDH) was synthesized for the first time by using a simple hydrothermal coprecipitation method for phosphate removal from wastewater. A maximum adsorption capacity of 194.04 mgP/g was achieved, ranking on the top of known LDHs. Adsorption kinetic experiments showed that 0.02 g/L Ca-La LDH could effectively reduce PO43-P from 1.0 to <0.02 mg/L within 30 min. With the copresence of bicarbonate and sulfate at concentrations 17.1 and 35.7 times of that of PO43-P, the Ca-La LDH showed promising selectivity towards phosphate (with a reduction in the adsorption capacity of <13.6%). In addition, four other (Mg-La, Co-La, Ni-La, and Cu-La) LDHs containing different divalent metal ions were synthesized by using the same coprecipitation method. Results showed much higher P adsorption performance of the Ca-La LDH than those LDHs. Field Emission Electron Microscopy (FE-SEM)-Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and mesoporous analysis were performed to characterize and compare the adsorption mechanisms of different LDHs. The high adsorption capacity and selectivity of the Ca-La LDH were mainly explained by selective chemical adsorption, ion exchange, and inner sphere complexation.


Subject(s)
Wastewater , Water Pollutants, Chemical , Phosphates/analysis , Hydroxides/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Kinetics
14.
BMC Genomics ; 13: 718, 2012 Dec 22.
Article in English | MEDLINE | ID: mdl-23259970

ABSTRACT

BACKGROUND: The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. RESULTS: In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. CONCLUSIONS: Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.


Subject(s)
Evolution, Molecular , Genes/genetics , MicroRNAs/genetics , MicroRNAs/physiology , Gene Expression Profiling , Humans , INDEL Mutation/genetics , MicroRNAs/classification , Mutation Rate , Polymorphism, Single Nucleotide/genetics , Species Specificity , Time Factors
15.
Article in English | MEDLINE | ID: mdl-35954877

ABSTRACT

This study used a 2 × 2 experimental design to explore the effects of message type (non-narrative vs. narrative information) and social media metrics (high vs. low numbers of plays) of low-carbon-themed social media short videos on people's willingness to protect the environment. Subjects completed questionnaires after viewing short videos that contained different message types and social media metrics, and a final sample of 295 cases was included in the data analysis. The study found that, while the type of information (i.e., non-narrative or narrative) of the low-carbon-themed social media short videos had no direct effect on people's willingness to protect the environment, its indirect effects were significant. These indirect effects were achieved through immersion experience and social influence. Subjects who watched narrative videos had a higher level of immersion experience, which in turn was significantly and positively correlated with environmental intention; meanwhile, those who watched non-narrative videos experienced a higher level of social influence, which in turn was significantly and positively correlated with environmental intention. In addition, subjects who viewed high-volume videos experienced a more positive effect on their willingness to protect the environment. This study explored how message design could promote subjects' perceptions and positive attitudes towards environmental protection, with important managerial implications.


Subject(s)
Social Media , Carbon , Humans , Intention , Narration , Videotape Recording
16.
Bioresour Technol ; 351: 127006, 2022 May.
Article in English | MEDLINE | ID: mdl-35304256

ABSTRACT

This study introduced the excellent improvement of enzyme cocktail (lysozyme and protease) on hydrolysis efficiency and the role of reducing carbon emission as an alternative carbon source. The best dosing method after optimization was to add four parts of lysozyme at 0 h and one part of protease at 1 h. The extracellular proteins and polysaccharides increased by 118% and 64% respectively under the optimal dosing mode. Enzyme cocktails reduced more organic matters and extended the distribution of sludge particles in the small particle size part. The enzymatic-treated sludge could reduce 21.09 kg CO2/t VSS if utilized to replace methanol for denitrification carbon source. Enzyme cocktails did better in enhancing both solubilization and hydrolysis than single enzymes under the optimal method. This study will provide a more integrated and comprehensive system for enzymatic pretreatment and new insight into the enzymatic pretreatment enhancing hydrolysis and reducing carbon emission.


Subject(s)
Carbon , Sewage , Hydrolysis , Muramidase/metabolism , Peptide Hydrolases/metabolism , Waste Disposal, Fluid/methods
17.
Water Res ; 216: 118258, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35320769

ABSTRACT

This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.


Subject(s)
Actinomycetales , Betaproteobacteria , Acetates , Actinomycetales/metabolism , Adenosine Triphosphatases/metabolism , Aspartic Acid , Betaproteobacteria/metabolism , Bioreactors , Carbon/metabolism , Energy Metabolism , Glutamic Acid/metabolism , Glycogen/metabolism , Phosphorus/metabolism , Polyphosphates/metabolism , Propionates , Propionibacteriaceae , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Succinate Dehydrogenase/metabolism
18.
Chemosphere ; 302: 134841, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35525448

ABSTRACT

Lysozyme hydrolysis can accelerate waste-activated sludge (WAS) solubilisation, which can significantly shorten the process and promote the efficiency of anaerobic digestion. This study investigated the impact of divalent cations on lysozyme-induced solubilisation of WAS. The performance of lysozyme pretreatment was dramatically inhibited by Mg2+ and Ca2+. Compared to the control group, the amount of net SCOD, protein, and polysaccharides released to the supernatant were reduced by 36.6%, 44.7%, and 35.8%, respectively, in the presence of divalent cations. The extracellular polymeric substance (EPS) matrix became tightly bound, resulting in fewer proteins and polysaccharides being extracted from loosely-bound EPS (LB-EPS) with divalent cations, which was detrimental to the solubilisation of WAS. Divalent cations decreased the surface electronegativity of sludge particles and prolonged the adsorption of lysozymes by sludge flocs. More than 16.6% of total lysozymes remained in the liquid phase of WAS after 240 min Mg2+ and Ca2+ strengthened the binding among proteins and polysaccharides and promoted the intermolecular cross-linking of polysaccharides. The EPS matrix formed a dense spatial reticular structure that blocked the transfer of lysozymes from the EPS matrix to the pellet. As a result, the lysozymes accumulated in LB-EPS rather than hydrolysing the microorganism's cell wall. This study provides a new perspective on the restriction of WAS pretreatment with lysozymes and optimises the method of lysozyme-induced solubilisation of WAS.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Cations, Divalent/analysis , Extracellular Polymeric Substance Matrix/chemistry , Muramidase , Polysaccharides/analysis , Proteins/analysis , Sewage/chemistry , Waste Disposal, Fluid/methods
19.
Sci Rep ; 11(1): 2499, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510233

ABSTRACT

Co-combustion of municipal excess sludge (ES) and coal provides an alternative method for disposing ES. The present study aims to investigate the residual and ecological risk of heavy metals in fly ash from co-combustion of ES and coal. The total concentration and speciation distribution of heavy metals, characterization of SEM, EDX, XRD and leaching test were carried out to assess the fly ash in this study. The results showed that the total concentrations of Cu, Zn and Mn were higher than others in fly ash, and most heavy metals were concentrated in fine particles. For Cd, Cr and Pb, the percentages of speciation of F4 and F5 were all over 90%, suggesting the relatively lower leaching toxicity. The leaching percent of all heavy metals was lower than 5% by two diluted HNO3 solutions for fly ash. The potential ecological risks increased with the decrease of particle size of fly ash, and Cd accounted for the main fraction for ecological risk despite of lower concentration in comparison to other measured heavy metals.

20.
Chemosphere ; 283: 131278, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34467945

ABSTRACT

Production of MCFAs (Medium-chain fatty acids) from simple substrate (i.e., ethanol and acetate) and WAS with chain elongation microbiome was investigated in this study. The results showed that rapid production of MCFAs was observed when simple substrate was utilized. 1889 mg/L of caproate and 3434 mg/L of butyrate were achieved after 10 d's reaction. H2 proportion in the headspace could reach as high as 10.1% on day 8 and then declined quickly. However, when WAS was used, the bacterial consortia was not able to hydrolyze WAS efficiently, which resulted in poor MCFAs production performance. Presence of ethanol could improve the hydrolysis process to a limited degree, which resulted in solubilization of a small fraction of protein and carbohydrate. Around 33.8% and 36.9% of the total detected electrons on day 6 in the 50 mM and 100 mM tests were extracted from WAS respectively. Those results indicate that the chain elongation microbial consortia tended to receive electrons form ethanol directly other than the complex WAS.


Subject(s)
Ethanol , Sewage , Electrons , Fatty Acids , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL