Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 370
Filter
Add more filters

Publication year range
1.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: mdl-35922005

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
2.
Proc Natl Acad Sci U S A ; 120(17): e2300376120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068258

ABSTRACT

The high transmissibility of SARS-CoV-2 Omicron subvariants was generally ascribed to immune escape. It remained unclear whether the emerging variants have gradually acquired replicative fitness in human respiratory epithelial cells. We sought to evaluate the replicative fitness of BA.5 and earlier variants in physiologically active respiratory organoids. BA.5 exhibited a dramatically increased replicative capacity and infectivity than B.1.1.529 and an ancestral strain wildtype (WT) in human nasal and airway organoids. BA.5 spike pseudovirus showed a significantly higher entry efficiency than that carrying WT or B.1.1.529 spike. Notably, we observed prominent syncytium formation in BA.5-infected nasal and airway organoids, albeit elusive in WT- and B.1.1.529-infected organoids. BA.5 spike-triggered syncytium formation was verified by lentiviral overexpression of spike in nasal organoids. Moreover, BA.5 replicated modestly in alveolar organoids, with a significantly lower titer than B.1.1.529 and WT. Collectively, the higher entry efficiency and fusogenic activity of BA.5 spike potentiated viral spread through syncytium formation in the human airway epithelium, leading to enhanced replicative fitness and immune evasion, whereas the attenuated replicative capacity of BA.5 in the alveolar organoids may account for its benign clinical manifestation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Nose , Organoids , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
3.
J Physiol ; 602(17): 4251-4269, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39087821

ABSTRACT

The consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart. At ∼9 months preconception, female baboons (Papio hamadryas) were randomly assigned to either a control diet or HF-HED. At 165 days gestational age (term = 184 days), fetuses were delivered by Caesarean section under anaesthesia, humanely killed, and left ventricular cardiac tissue (Control (n = 6 female, 6 male); HF-HED (n = 6 F, 6 M)) was collected. Maternal HF-HED decreased the concentration of active cardiac TH (i.e. triiodothyronine (T3)), and type 1 iodothyronine deiodinase (DIO1) mRNA expression. Maternal HF-HED decreased the abundance of cardiac markers of insulin-mediated glucose uptake phosphorylated insulin receptor substrate 1 (Ser789) and glucose transporter 4, and increased protein abundance of key oxidative phosphorylation complexes (I, III, IV) and mitochondrial abundance in both sexes. Maternal HF-HED alters cardiac TH status, which may induce early signs of cardiac insulin resistance. This may increase the risk of cardiometabolic disorders in later life in offspring born to these pregnancies. KEY POINTS: Babies born to mothers who consume a high fat-high energy diet (HF-HED) prior to and during pregnancy are predisposed to an increased risk of cardiometabolic disorders across the life course. Maternal HF-HED prior to and during pregnancy decreased thyroid hormone triiodothyronine (T3) concentrations and type 1 iodothyronine deiodinase DIO1 mRNA expression in the non-human primate fetal heart. Maternal HF-HED decreased markers of insulin-dependent glucose uptake, phosphorylated insulin receptor substrate 1 and glucose transporter 4 in the fetal heart. Maternal HF-HED increased mitochondrial abundance and mitochondrial OXPHOS complex I, III and IV in the fetal heart. Fetuses from HF-HED pregnancies are predisposed to cardiometabolic disorders that may be mediated by changes in T3, placing them on a poor lifetime cardiovascular health trajectory.


Subject(s)
Diet, High-Fat , Fetal Heart , Animals , Female , Pregnancy , Diet, High-Fat/adverse effects , Fetal Heart/metabolism , Male , Thyroid Hormones/metabolism , Thyroid Hormones/blood , Maternal Nutritional Physiological Phenomena , Papio hamadryas/metabolism
4.
J Med Virol ; 96(3): e29479, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38425270

ABSTRACT

Infection with influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant risk to human life, health, and the global economy. Vaccination is one of the most effective strategies in the fight against infectious viruses. In this study, we, for the first time, have evaluated the immunogenicity and protective effect of an influenza/SARS-CoV-2 Omicron subunit combined vaccine adjuvanted with MF59 and administered to BALB/c mice. Results showed that the combined vaccine induced high levels of IgG, IgG1 , and IgG2a antibodies, as well as influenza A H1N1/California/2009 virus-specific hemagglutination-inhibiting antibodies in BALB/c mice. Moreover, this subunit combined vaccine induced high titers of neutralization antibodies against SARS-CoV-2 Omicron sublineage BA.5 pseudovirus and effectively reduced the viral load of authentic SARS-CoV-2 Omicron sublineage BA.5.2 in the cell culture supernatants. These results suggested that this subunit combined vaccine achieved protective effect against both H1N1 A/California/07/2009 strain and SARS-CoV-2 Omicron BA.5.2 variant. It is therefore expected that this study will establish the scientific foundation for the next-step development of combined vaccines against other strains or variants of IAV and SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Animals , Mice , Humans , SARS-CoV-2 , Mice, Inbred BALB C , COVID-19/prevention & control , Vaccines, Combined , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
5.
Environ Sci Technol ; 58(14): 6083-6092, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38547129

ABSTRACT

Despite significant advances in understanding the general health impacts of air pollution, the toxic effects of air pollution on cells in the human respiratory tract are still elusive. A robust, biologically relevant in vitro model for recapitulating the physiological response of the human airway is needed to obtain a thorough understanding of the molecular mechanisms of air pollutants. In this study, by using 1-nitropyrene (1-NP) as a proof-of-concept, we demonstrate the effectiveness and reliability of evaluating environmental pollutants in physiologically active human airway organoids. Multimodal imaging tools, including live cell imaging, fluorescence microscopy, and MALDI-mass spectrometry imaging (MSI), were implemented to evaluate the cytotoxicity of 1-NP for airway organoids. In addition, lipidomic alterations upon 1-NP treatment were quantitatively analyzed by nontargeted lipidomics. 1-NP exposure was found to be associated with the overproduction of reactive oxygen species (ROS), and dysregulation of lipid pathways, including the SM-Cer conversion, as well as cardiolipin in our organoids. Compared with that of cell lines, a higher tolerance of 1-NP toxicity was observed in the human airway organoids, which might reflect a more physiologically relevant response in the native airway epithelium. Collectively, we have established a novel system for evaluating and investigating molecular mechanisms of environmental pollutants in the human airways via the combinatory use of human airway organoids, multimodal imaging analysis, and MS-based analyses.


Subject(s)
Air Pollutants , Pyrenes , Respiratory System , Humans , Reproducibility of Results , Organoids , Multimodal Imaging
6.
J Fluoresc ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536610

ABSTRACT

In this work, a simple and sensitive N-acetyl-L-cysteine (NAC)-covered CdTe quantum dots (NAC-CdTe QDs) fluorescence probe for continuous detection of Co2+ and pyrophosphate ions (PPi, P2O74-) was synthesized. The fluorescence of the quantum dots was significantly quenched by Co2+ through the coordination of Co2+ and the carboxyl groups on the NAC-CdTe quantum dots. Interestingly, the combination of NAC-CdTe quantum dots with Co2+ yields a new fluorescence probe of Co2+-modified NAC-CdTe QDs (Co2+@NAC-CdTe). The addition of PPi restored the fluorescence due to the competition between PPi and carboxyl groups with Co2+ causing Co2+ to detach from the surface of Co2+@NAC-CdTe quantum dots. Thus, a sensitive and reversible detection of Co2+ and PPi had been successfully established. The Co2+@NAC-CdTe quantum dots fluorescence probe exhibits excellent selectivity and high sensitivity toward PPi detection with low detection limit of 0.28 µM. In addition, the novel fluorescence probe was successfully applied to detect the concentration of PPi in environmental water samples and in-vitro cells imaging.

7.
J Fluoresc ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502406

ABSTRACT

Hydrogen sulfide (H2S) plays a key role in the physiology and pathology of organisms, and H2S in the environment is easily absorbed and harmful to health. It is of great significance to develop a probe with good selectivity, high sensitivity and good stability that can detect hydrogen sulfide inside and outside organisms. In this work, we designed a novel "turn-on" fluorescent probe CIM-SDB for the detection of H2S. The probe CIM-SDB used indene-carbazole as the fluorophore and 2,4-dinitrobenzenesulfonyl as the recognition site. The probe CIM-SDB exhibited high selectivity and sensitivity to H2S (detection limit as low as 123 nM). Moreover, the probe CIM-SDB was successfully applied to the detection of intracellular exogenous and endogenous H2S, and the test strips prepared by the probe CIM-SDB could realize the convenient and rapid detection of H2S.

8.
Ecotoxicol Environ Saf ; 283: 116786, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39083869

ABSTRACT

Cd ions are absorbed and transported from the soil by crop roots, which are the first organ to be exposed to Cd. This results in an increase in cadmium ions in crops, significantly affecting crop growth and yield. Exogenous melatonin (MT) can help reduce cadmium (Cd) stress in cotton, but the specific contribution of roots to this process remains unclear. In order to address this knowledge gap, an in-situ root phenotyping study was conducted to investigate the the phenotype and lifespan of roots under cadmium stress (Cd) and melatonin treatment (Cd + MT). The results showed that MT alleviated the decreases in plant height, leaf area, SPAD value, stem diameter, stomatal conductance and net photosynthetic rate under Cd stress, which further promoted the biomass accumulation in various cotton organs. What is more, the Cd + MT treatment increased root volume, surface area, and length under Cd stress by 25.63 %, 10.58 %, and 21.89 %, respectively, compared with Cd treatment. Interestingly, compared to Cd treatment, Cd + MT treatment also significantly extended the lifespan of roots and root hairs by 6.68 days and 2.18 days, respectively. In addition, Cd + MT treatment reduced the transport of Cd from roots to shoots, particularly to bolls, and decreased the Cd bioconcentration factor in bolls by 61.17 %, compared to Cd treatment. In conclusion, these findings show that applying MT externally helps reduce Cd stress by delaying root senescence, promoting root development and regulating Cd transport. This method can be an effective approach to managing Cd stress in cotton.


Subject(s)
Cadmium , Gossypium , Melatonin , Plant Roots , Soil Pollutants , Gossypium/drug effects , Gossypium/growth & development , Melatonin/pharmacology , Cadmium/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Soil Pollutants/toxicity , Biological Transport/drug effects
9.
J Assist Reprod Genet ; 41(8): 1965-1976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38954294

ABSTRACT

PURPOSE: Oocyte maturation defect (OOMD) is a rare cause of in vitro fertilization failure characterized by the production of immature oocytes. Compound heterozygous or homozygous PATL2 mutations have been associated with oocyte arrest at the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) stages, as well as morphological changes. METHODS: In this study, we recruited three OOMD cases and conducted a comprehensive multiplatform laboratory investigation. RESULTS: Whole exome sequence (WES) revealed four diagnostic variants in PATL2, nonsense mutation c.709C > T (p.R237*) and frameshift mutation c.1486_1487delinsT (p.A496Sfs*4) were novel mutations that have not been reported previously. Furthermore, the pathogenicity of these variants was predicted using in silico analysis, which indicated detrimental effects. Molecular dynamic analysis suggested that the A496S variant disrupted the hydrophobic segment, leading to structural changes that affected the overall protein folding and stability. Additionally, biochemical and molecular experiments were conducted on cells transfected with wild-type (WT) or mutant PATL2 (p.R237* and p.A496Sfs*4) plasmid vectors. CONCLUSIONS: The results demonstrated that PATL2A496Sfs*4 and PATL2R237* had impacts on protein size and expression level. Interestingly, expression levels of specific genes involved in oocyte maturation and early embryonic development were found to be simultaneously deregulated. The findings in our study expand the variation spectrum of the PATL2 gene, provide solid evidence for counseling on future pregnancies in affected families, strongly support the application of in the diagnosis of OOMD, and contribute to the understanding of PATL2 function.


Subject(s)
Exome Sequencing , Infertility, Female , Nuclear Proteins , Oocytes , Oogenesis , RNA-Binding Proteins , Adult , Female , Humans , Codon, Nonsense/genetics , Fertilization in Vitro , Frameshift Mutation/genetics , Infertility, Female/genetics , Infertility, Female/pathology , Mutation/genetics , Oocytes/growth & development , Oocytes/pathology , Oocytes/metabolism , Oogenesis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
10.
Sensors (Basel) ; 24(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39275451

ABSTRACT

A MEMS piezoresistive sensor for measuring accelerations greater than 100,000 g (about 106 m/s2) is described in this work. To enhance the performance of the sensor, specifically widening its measurement range and natural frequency, a cross-beam construction with a center block was devised, and a Wheatstone bridge was formed by placing four piezoresistors at the ends of the fixed beams to convert acceleration into electricity. The location of the varistor was determined using the finite element approach, which yielded the optimal sensitivity. Additionally, a reliable Pt-Ti-Pt-Au electrode was designed to solve the issue of the electrode failing under high impact and enhancing the stability of the ohmic contact. The accelerometer was fabricated using MEMS technology, and the experiment with a Hopkinson pressure bar and hammering was conducted, and the bias stability was measured. It had a sensitivity of 1.06 µV/g with good linearity. The simulated natural frequency was 633 kHz The test result revealed that the accelerometer can successfully measure an acceleration of 100,000 g.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 636-640, 2024 Aug.
Article in Zh | MEDLINE | ID: mdl-39223030

ABSTRACT

Glycogen storage diseases (GSDs) are a group of autosomal recessive disorders of glucose metabolism.GSDs are caused by congenital deficiency of enzymes in glycogen synthesis or decomposition,which results in glycogen accumulation in organs.According to the types of enzyme deficiency,GSDs can be classified into more than ten types,among which GSD Ⅻ is a super-rare type of GSD.Two brothers with a 5-year age difference presented severe neonatal asphyxia,myasthenia,myocardial damage,anemia,and mental retardation,being GSD Ⅻ homozygous cases with neonatal onset.The results of gene detection showed that nucleotide and amino acid alterations (c.619G>A,p.E207K) of the ALDOA gene existed in the two brothers,being homozygous,and the genotypes in the parents were heterozygous.This article summarized the clinical features,diagnosis,and treatment of GSD Ⅻ,providing reference for exploring the etiology and treatment of severe asphyxia,myasthenia,anemia,and multiple organ damage in neonates after birth.


Subject(s)
Glycogen Storage Disease , Humans , Male , Infant, Newborn , Child, Preschool , Glycogen Storage Disease/genetics , Glycogen Storage Disease/diagnosis , Siblings , Mutation
12.
Zhongguo Zhong Yao Za Zhi ; 49(1): 123-129, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403345

ABSTRACT

This study explored the preparation process of the placebo of Jiawei Ermiao Granules and evaluated the placebo effect, aiming to provide qualified placebo samples for clinical trials of Jiawei Ermiao Granules and a reference for the preparation and quality evaluation of placebos of traditional Chinese medicine granules. On the basis of the comprehensive analysis results of Jiawei Ermiao Granules, the orthogonal experiment was conducted to optimize the flavoring agents and colorants. After manual evaluation, the placebo formula was determined as dextrin 10 g, Codonopsis Radix extract 5.0 g, bitter melon extract 1.6 g, Mume Fructus extract 0.3 g, stevioside 0.1 g, sucrose octaacetate 0.004 g, indigo 0.004 g, lemon yellow 0.003 1 g, sunset yellow 0.001 8 g, bitter tea powder 0.001 8 g, caramel 0.001 3 g. Pilot trials were conducted on the placebo formula. The simulation effect of placebo was evaluated independently and comparatively, and the objectively evaluated by electronic nose and electronic tongue. The results showed that the independent manual evaluation of the placebo formula had higher error rate, and the placebo and Jiawei Ermiao Granules showed the similarity of 99.61% in the comparative manual evaluation. The smell similarity between the placebo and Jiawei Ermiao Granules was 99.19%, and the electronic tongue test showed little difference in the taste. In conclusion, the placebo prepared in this study shows a high similarity to Jiawei Ermiao Granules, which is not easy to break the blindness when being applied to clinical trials. This study provides a reference for the preparation and quality evaluation and promotes the large-scale production of placebos of traditional Chinese medicine granules, playing a role in improving the persuasiveness and acceptance of the efficacy of traditional Chinese medicines.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Taste
13.
FASEB J ; 36(12): e22644, 2022 12.
Article in English | MEDLINE | ID: mdl-36415994

ABSTRACT

Maternal obesity (MO) during pregnancy is linked to increased and premature risk of age-related metabolic diseases in the offspring. However, the underlying molecular mechanisms still remain not fully understood. Using a well-established nonhuman primate model of MO, we analyzed tissue biopsies and plasma samples obtained from post-pubertal offspring (3-6.5 y) of MO mothers (n = 19) and from control animals born to mothers fed a standard diet (CON, n = 13). All offspring ate a healthy chow diet after weaning. Using untargeted gas chromatography-mass spectrometry metabolomics analysis, we quantified a total of 351 liver, 316 skeletal muscle, and 423 plasma metabolites. We identified 58 metabolites significantly altered in the liver and 46 in the skeletal muscle of MO offspring, with 8 metabolites shared between both tissues. Several metabolites were changed in opposite directions in males and females in both liver and skeletal muscle. Several tissue-specific and 4 shared metabolic pathways were identified from these dysregulated metabolites. Interestingly, none of the tissue-specific metabolic changes were reflected in plasma. Overall, our study describes characteristic metabolic perturbations in the liver and skeletal muscle in MO offspring, indicating that metabolic programming in utero persists postnatally, and revealing potential novel mechanisms that may contribute to age-related metabolic diseases later in life.


Subject(s)
Obesity, Maternal , Humans , Animals , Male , Female , Pregnancy , Weaning , Obesity/metabolism , Diet , Muscle, Skeletal/metabolism , Liver/metabolism , Life Style , Puberty
14.
Analyst ; 148(7): 1603-1610, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36912125

ABSTRACT

Aconitum L. poisoning is a major type of poisoning caused by herbal medicines in many countries. However, despite its toxicity, Aconitum L. is still used because of its therapeutic value. Fuzi, the lateral root of Aconitum L., is one of the most important pharmacological parts. It is necessary for rational medication to figure out the types and contents of toxic Aconitum alkaloids (AAs) in Fuzi and its processed products. The present study aims to investigate the spatial distribution of toxic AAs in Fuzi and the quantification of AAs in various processing products through mass spectrometry methods. In this study, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used to directly image the sections of raw Fuzi. The results showed a high content of diester alkaloids (DAs) and a relatively uniform distribution in the sections, while the content of monoester alkaloids (MAs) was low and uneven in the sections, distributed in the cortex, epidermis, vascular column, and other parts of the tissues. The content of non-ester alkaloids (NAs) was relatively minimum, and most of the NAs were distributed in the vascular column and the tightly connected cortex of the tissue. To further investigate the difference between raw and processed Fuzi, 60 known compounds were identified using UHPLC-QTOF-MS. The total contents of alkaloids in 7 processed Fuzi were lower than that in Shengfupian (SFP). Paofupian (PFP), Paotianxiong (PTX), Paofupian (PFP*), Danfupian (DFP), and Shufupian (SFP*) were the least similar. Zhengfupian (ZFP) and Chaofupian (CFP) had significantly reduced toxicity and increased efficacy compared with other processed products because the contents of active alkaloids in other processed products were also reduced. Understanding the distribution of metabolites and the composition changes after processing can guide users and herbal manufacturers to carefully choose the relatively safe and better therapeutic species of Fuzi. The information gathered from this study can contribute towards the improved and effective management of therapeutically important, nonetheless toxic, drugs such as Aconitum L.


Subject(s)
Aconitum , Alkaloids , Drugs, Chinese Herbal , Aconitum/chemistry , Chromatography, High Pressure Liquid/methods , Alkaloids/analysis , Alkaloids/chemistry , Alkaloids/pharmacology , Drugs, Chinese Herbal/analysis , Plant Roots
15.
J Fluoresc ; 33(5): 2075-2084, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36988782

ABSTRACT

In this paper, a novel amino acid surface-functionalized semiconductor CdTe quantum dot fluorescent probe amidated by carboxyl and amide groups was synthesized to detect pyrophosphate ions (P2O74-, PPi). L-Arginine (L-Arg) was grafted onto cysteine modified CdTe quantum dots (Mea-CdTe QDs) to form a new L-Arginine-functionalized quantum dot fluorescent probe (L-Arg@Mea-CdTe). The prepared probe has good optical properties with multiple grafted functional groups on the surface. The guanidine group of the L-Arg@Mea-CdTe fluorescent probe is strongly basic and will be fully protonated under physiological conditions. The resulting hydrogen bonds bound to pyrophosphate lead to significant changes in the fluorescence of CdTe quantum dots. IR and XPS characterization were performed to confirm it. The addition of PPi induces a significant fluorescence quenching of L-Arg@Mea-CdTe in aqueous solution. The fluorescent QDs probe can also detect pyrophosphate with good sensitivity and anti-interference performance. The detection limit of the L-Arg@Mea-CdTe fluorescence probe for PPi is as low as 0.30 µM. In addition, the novel nano-fluorescent probe was successfully applied to detect PPi in water and in cell imaging.

16.
BMC Psychiatry ; 23(1): 241, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041508

ABSTRACT

BACKGROUND: High levels of childhood trauma (CT) have been observed in adults with mental health problems. Herein, we investigated whether self-esteem (SE) and emotion regulation strategies (cognitive reappraisal (CR) and expressive suppression (ES)) affect the association between CT and mental health in adulthood, including depression and anxiety symptoms. METHODS: We performed a cross-sectional study of 6057 individuals (39.99% women, median age = 34 y), recruited across China via the internet, who completed the Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), Childhood Trauma Questionnaire (CTQ), Self-esteem Scale (SES), and Emotion Regulation Questionnaire (ERQ). Multivariate linear regression analysis and bias-corrected percentile bootstrap methodologies were used to assess the mediating effect of SE, and hierarchical regression analysis and subgroup approach were performed to examine the moderating effects of emotion regulation strategies. RESULTS: After controlling for age and sex, we found that (1) SE mediated the associations between CT and depression symptoms in adulthood (indirect effect = 0.05, 95% confidence interval [CI]: 0.04-0.05, 36.2% mediated), and CT and anxiety symptoms in adulthood (indirect effect = 0.03, 95% CI: 0.03-0.04, 32.0% mediated); (2) CR moderated the association between CT and SE; and (3) ES moderated the association between of CT and mental health in adulthood via SE, and such that both the CT-SE and SE-mental health pathways were stronger when ES is high rather than low, resulting the indirect effect was stronger for high ES than for low ES. CONCLUSIONS: These findings suggested that SE plays a partially mediating role in the association between CT and mental health in adulthood. Furthermore, ES aggravated the negative effect of CT on mental health in adulthood via SE. Interventions such as emotional expression training may help reduce the detrimental effects of CT on mental health. TRIAL REGISTRATION: The study was registered on http://www.chictr.org.cn/index.aspx and the registration number was ChiCTR2200059155.


Subject(s)
Adverse Childhood Experiences , Emotional Regulation , Adult , Humans , Female , Male , Mental Health , Cross-Sectional Studies , Anxiety/psychology
17.
Ann Gen Psychiatry ; 22(1): 3, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721207

ABSTRACT

BACKGROUND: Sleep disorders are common during the outbreak of pandemic diseases, and similar disorders are noted in hospitalized COVID-19 patients. It is valuable to explore the clinical manifestations and risk factors for sleep disorders in COVID-19 patients. METHODS: Inpatients with COVID-19 were enrolled. Detailed clinical information was collected, and sleep quality was assessed by PSQI. Patients were divided into a sleep disorder group and a normal group based on a PSQI ≥ 7, and the clinical features were compared between the groups. RESULTS: Fifty-three patients were enrolled, and 47.2% presented sleep disorders. Sleep disorders were associated with older age (> 50), anemia and carbon dioxide retention. Furthermore, factors associated with abnormal component scores of the PSQI were: (1) patients with older age were more likely to have decreased sleep quality, prolonged sleep latency, decreased sleep efficiency, sleep disturbances, and daytime dysfunction; (2) decreased sleep quality and prolonged sleep latency were associated with dyspnea, whereas carbon dioxide retention and more lobes involved in chest CT were associated with prolonged sleep latency; (3) decreased sleep efficiency was more prevalent in patients with anemia. CONCLUSIONS: Sleep disorders were prevalent in patients during the acute phase of COVID-19, and many risk factors (older age, anemia, carbon dioxide retention, the number of lobes involved in chest CT, and dyspnea) were identified. It is important to assess the presence of sleep disorders in patients to provide early intervention.

18.
Pestic Biochem Physiol ; 195: 105578, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666583

ABSTRACT

Essential oils (EOs) and their volatile secondary metabolites have been proved to be effective on storage pests control, while restricted on the application due to unclear mechanism. Molecular dynamics (MD) simulations and binding free energies analysis provided an effective approach to reveal mechanism on conformational calculation. In this work, the insecticidal and repellent capacities of Praxelis clematidea and Ageratum houstonianum oils and their main components identified by gas chromatography-mass spectrometry (GC-MS) were scientifically measured. Interestingly, P. clematidea oil exhibited strong fumigant toxicity against Tribolium castaneum (LC50 = 7.07 mg/L air). Moreover, two EOs exhibited over 80% repellent rate against T. castaneum at the highest concentration of 78.63 nL/cm2. Furthermore, hundreds of enzymes related to the regulation of biological processes of T. castaneum were screened to explore the underlying molecular mechanism and develop promising insecticides. Besides, top hits were subjected to MD simulations and binding free energies analysis to elucidate complex inter-molecular stability and affinity over simulated time. The results demonstrated that isolongifolene, δ-cadinene, ß-caryophyllene and caryophyllene oxide were prioritized as they were establishing conserved and stable interactions with residues of nuclear hormone receptor 3 (TcHR3) of T. castaneum, which suggested that the four sesquiterpenes have potential to be promising insecticides on storage pests control.


Subject(s)
Asteraceae , Insect Repellents , Insecticides , Sesquiterpenes , Tribolium , Animals , Insecticides/pharmacology , Sesquiterpenes/pharmacology , Gas Chromatography-Mass Spectrometry
19.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894873

ABSTRACT

Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.


Subject(s)
Cardiovascular Diseases , Fetal Development , Pregnancy , Humans , Animals , Male , Female , Fetus/metabolism , Fetal Growth Retardation/metabolism , Primates , Nutrients , Cardiovascular Diseases/metabolism
20.
Molecules ; 28(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985497

ABSTRACT

Employing the new nitronyl nitroxide biradical ligand biNIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)), a 16-spin Cu-radical complex, [Cu8(biNIT-3Py-5-Ph)4(hfac)16] 1, and three 2p-3d-4f chain complexes, {[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (LnⅢ= Gd 2, Tb 3, Dy 4; hfac = hexafluoroacetylacetonate), have been prepared and characterized. X-ray crystallographic analysis revealed in all derivatives a common cyclic [Cu-biNIT]2 secondary building unit in which two bi-NIT-3Py-5-Ph biradical ligands and two CuII ions are associated via the pyridine N atoms and NO units. For complex 1, two such units assemble with four additional CuII ions to form a discrete complex involving 16 S = 1/2 spin centers. For complexes 2-4, the [Cu-biNIT]2 units are linked by LnIII ions via NO groups in a 1D coordination polymer. Magnetic studies show that the coordination of the aminoxyl groups with Cu or Ln ions results in behaviors combining ferromagnetic and antiferromagnetic interactions. No slow magnetic relaxation behavior was observed for Tb and Dy derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL