Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
Add more filters

Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(2): 323-327, 2024 02.
Article in English | MEDLINE | ID: mdl-38266112

ABSTRACT

OBJECTIVE: The goal of this review is to discuss the implementation of genome-wide association studies to identify causal mechanisms of vascular disease risk. APPROACH AND RESULTS: The history of genome-wide association studies is described, the use of imputation and the creation of consortia to conduct meta-analyses with sufficient power to arrive at consistent associated loci for vascular disease. Genomic methods are described that allow the identification of causal variants and causal genes and how they impact the disease process. The power of single-cell analyses to promote genome-wide association studies of causal gene function is described. CONCLUSIONS: Genome-wide association studies represent a paradigm shift in the study of cardiovascular disease, providing identification of genes, cellular phenotypes, and disease pathways that empower the future of targeted drug development.


Subject(s)
Cardiovascular Diseases , Vascular Diseases , Humans , Genome-Wide Association Study , Genomics , Drug Development
2.
Magn Reson Med ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285622

ABSTRACT

PURPOSE: To compare phase-resolved functional lung (PREFUL) regional ventilation derived from a free breathing 3D UTE radial MRI acquisition to hyperpolarized 129Xe-MRI (Xe-MRI), conventional 2D multi-slice PREFUL MRI, and pulmonary function tests in pediatric cystic fibrosis (CF) lung disease. METHODS: Free-breathing 3D UTE and 2D multi-slice 1H MRI as well as Xe-MRI were acquired in 12 stable pediatric CF patients. Using PREFUL, regional ventilation (RVent) maps were calculated from the free-breathing data. Ventilation defect percentage (VDP) was determined from 3D and 2D RVent maps (2D VDPRVent and 3D VDPRVent, respectively) and Xe-MRI ventilation (VDPXe). VDP was calculated for the whole lung and for eight regions based on left/right, anterior/posterior, and superior/inferior divisions of the lung. Global and regional VDP was compared between the three methods using Bland-Altman analysis, linear mixed model-based correlation, and one-way analysis of variance and multiple comparisons tests. RESULTS: Global 3D VDPRVent, VDPXe, and 2D VDPRVent were all strongly correlated (all R2 > 0.62, p < 0.0001) and showed minimal, non-significant bias (all <2%, p > 0.05). Three dimensional and 2D VDPRVent significantly correlated to VDPXe in most of the separate lung regions (R2 = 0.18-0.74, p < 0.04), but showed lower inter-agreement. The superior/anterior lung regions showed the least agreement between all three methods (all p > 0.12). CONCLUSION: Absolute VDP assessed by 3D UTE PREFUL MRI showed good global agreement with Xe-MRI and 2D multi-slice PREFUL MRI in pediatric CF lung disease. Therefore, 3D UTE PREFUL MRI offers a sensitive and potentially more accessible alternative to Xe-MRI for regional volumetric evaluation of ventilation.

3.
Stat Med ; 43(15): 2972-2986, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38747472

ABSTRACT

The U.S. Food and Drug Administration (FDA) has launched Project Optimus to shift dose selection from the maximum tolerated dose (MTD) to the dose that produces the optimal risk-benefit tradeoff. One approach highlighted in the FDA's guidance involves conducting a randomized phase II trial following the completion of a phase I trial, where multiple doses (typically including the MTD and one or two doses lower than the MTD) are compared to identify the optimal dose that maximizes the benefit-risk tradeoff. This article focuses on the design of such a multiple-dose randomized trial, specifically the determination of the sample size. We generalized the standard definitions of type I error and power to accommodate the unique characteristics of dose optimization and derived a decision rule along with an algorithm to determine the optimal sample size. The resulting design is referred to as MERIT (Multiple-dosE RandomIzed Trial design for dose optimization based on toxicity and efficacy). Simulation studies demonstrate that MERIT has desirable operating characteristics, and a sample size between 20 and 40 per dosage arm often offers reasonable power and type I errors to ensure patient safety and benefit. To facilitate the implementation of the MERIT design, we provide software, available at https://www.trialdesign.org.


Subject(s)
Algorithms , Clinical Trials, Phase II as Topic , Computer Simulation , Maximum Tolerated Dose , Randomized Controlled Trials as Topic , Research Design , Sample Size , Humans , Clinical Trials, Phase II as Topic/methods , Dose-Response Relationship, Drug , United States , United States Food and Drug Administration
4.
Arterioscler Thromb Vasc Biol ; 43(2): 286-299, 2023 02.
Article in English | MEDLINE | ID: mdl-36546321

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as novel regulators of macrophage biology and inflammatory cardiovascular diseases. However, studies focused on lncRNAs in human macrophage subtypes, particularly human lncRNAs that are not conserved in rodents, are limited. METHODS: Through RNA-sequencing of human monocyte-derived macrophages, we identified suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR). Lipopolysaccharide/IFNγ (interferon γ) stimulated human macrophages were treated with SIMALR antisense oligonucleotides and subjected to RNA-sequencing to investigate the function of SIMALR. Western blots, luciferase assay, and RNA immunoprecipitation were performed to validate function and potential mechanism of SIMALR. RNAscope was performed to identify SIMALR expression in human carotid atherosclerotic plaques. RESULTS: RNA-sequencing of human monocyte-derived macrophages identified SIMALR, a human macrophage-specific long intergenic noncoding RNA that is highly induced in lipopolysaccharide/IFNγ-stimulated macrophages. SIMALR knockdown in lipopolysaccharide/IFNγ stimulated THP1 human macrophages induced apoptosis of inflammatory macrophages, as shown by increased protein expression of cleaved PARP (poly[ADP-ribose] polymerase), caspase 9, caspase 3, and Annexin V+. RNA-sequencing of control versus SIMALR knockdown in lipopolysaccharide/IFNγ-stimulated macrophages showed Netrin-1 (NTN1) to be significantly decreased upon SIMALR knockdown. We confirmed that NTN1 knockdown in lipopolysaccharide/IFNγ-stimulated macrophages induced apoptosis. The SIMALR knockdown-induced apoptotic phenotype was rescued by adding recombinant NTN1. NTN1 promoter-luciferase reporter activity was increased in HEK293T (human embryonic kidney 293) cells treated with lentiviral overexpression of SIMALR. NTN1 promoter activity is known to require HIF1α (hypoxia-inducible factor 1 subunit alpha), and our studies suggest that SIMALR may interact with HIF1α to regulate NTN1 transcription, thereby regulating macrophages apoptosis. SIMALR was found to be expressed in macrophages in human carotid atherosclerotic plaques of symptomatic patients. CONCLUSIONS: SIMALR is a nonconserved, human macrophage lncRNA expressed in atherosclerosis that suppresses macrophage apoptosis. SIMALR partners with HIF1α (hypoxia-inducible factor 1 subunit alpha) to regulate NTN1, which is a known macrophage survival factor. This work illustrates the importance of interrogating the functions of human lncRNAs and exploring their translational and therapeutic potential in human atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Plaque, Atherosclerotic/metabolism , Lipopolysaccharides , Netrin-1 , HEK293 Cells , Macrophages/metabolism , Atherosclerosis/metabolism , Apoptosis , Hypoxia-Inducible Factor 1
5.
Am J Otolaryngol ; 45(1): 104096, 2024.
Article in English | MEDLINE | ID: mdl-37956499

ABSTRACT

BACKGROUND: Children with aerodigestive dysfunction often undergo triple endoscopy (flexible bronchoscopy, rigid direct laryngoscopy and bronchoscopy, and esophagogastroduodenoscopy) for diagnostic evaluation as well as screening prior to airway reconstruction. Prevalence and risk factors for eosinophilic esophagitis (EoE) in this population are poorly understood. METHODS: A retrospective chart review was performed for pediatric patients, aged 0-21 years, who received a triple endoscopy with biopsy from January 1, 2015, to December 31, 2019, at the Children's Hospital at Montefiore (CHAM). Bivariate and multivariable analyses were used to compare the baseline characteristics between patients with and without EoE to assess for potential predictors of EoE. RESULTS: Of the 119 cases included in the analysis, 16.0 % (19) received a histopathologic diagnosis of EoE following triple endoscopy. Patients with EoE were more likely to have a family history of eczema (p = 0.02) and a dairy-free diet (p = 0.02). Age, sex, history of environmental allergies, and recency of initiating oral diet were not significantly associated with increased odds of an EoE diagnosis. CONCLUSIONS: A family history of eczema and a diet lacking allergenic foods, such as milk, may be associated with an increased risk of a future diagnosis of EoE in patients with aerodigestive dysfunction. Larger, multi-institutional studies are needed to identify early predictors of EoE.


Subject(s)
Eczema , Eosinophilic Esophagitis , Humans , Child , Eosinophilic Esophagitis/diagnosis , Eosinophilic Esophagitis/epidemiology , Eosinophilic Esophagitis/pathology , Retrospective Studies , Tertiary Healthcare , Endoscopy, Gastrointestinal , Eczema/complications
6.
J Bacteriol ; 205(4): e0045122, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36951588

ABSTRACT

Considerable progress has been made toward elucidating the mechanism of Staphylococcus aureus aggregation in synovial fluid. In this study, aggregate morphology was assessed following incubation under several simulated postsurgical joint conditions. Using fluorescently labeled synovial fluid polymers, we show that aggregation occurs through two distinct mechanisms: (i) direct bridging between S. aureus cells and host fibrinogen and (ii) an entropy-driven depletion mechanism facilitated by hyaluronic acid and albumin. By screening surface adhesin-deficient mutants (clfA, clfB, fnbB, and fnbA), we identified the primary genetic determinant of aggregation in synovial fluid to be clumping factor A. To characterize this bridging interaction, we employed an atomic force microscopy-based approach to quantify the binding affinity of either wild-type S. aureus or the adhesin mutant to immobilized fibrinogen. Surprisingly, we found there to be cell-to-cell variability in the binding strength of the bacteria for immobilized fibrinogen. Superhigh-resolution microscopy imaging revealed that fibrinogen binding to the cell wall is heterogeneously distributed at both the single cell and population levels. Finally, we assessed the antibiotic tolerance of various aggregate morphologies arising from newly deciphered mechanisms of polymer-mediated synovial fluid-induced aggregation. The formation of macroscopic aggregates under shear was highly tolerant of gentamicin, while smaller aggregates, formed under static conditions, were susceptible. We hypothesize that aggregate formation in the joint cavity, in combination with shear, is mediated by both polymer-mediated aggregation mechanisms, with depletion forces enhancing the stability of essential bridging interactions. IMPORTANCE The formation of a bacterial biofilm in the postsurgical joint environment significantly complicates the resolution of an infection. To form a resilient biofilm, incoming bacteria must first survive the initial invasion of the joint space. We previously found that synovial fluid induces the formation of Staphylococcus aureus aggregates, which may provide rapid protection during the early stages of infection. The state of the host joint environment, including the presence of fluid flow and fluctuating abundance of synovial fluid polymers, determines the rate and size of aggregate formation. By expanding on our knowledge of the mechanism and pathogenic implications of synovial fluid-induced aggregation, we hope to contribute insights for the development of novel methods of prevention and therapeutic intervention.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Biofilms , Staphylococcal Infections/microbiology , Fibrinogen/metabolism , Fibrinogen/pharmacology
7.
Magn Reson Med ; 89(5): 2048-2061, 2023 05.
Article in English | MEDLINE | ID: mdl-36576212

ABSTRACT

PURPOSE: The purpose of this study is to assess the intra- and interscan repeatability of free-breathing phase-resolved functional lung (PREFUL) MRI in stable pediatric cystic fibrosis (CF) lung disease in comparison to static breath-hold hyperpolarized 129-xenon MRI (Xe-MRI) and pulmonary function tests. METHODS: Free-breathing 1-hydrogen MRI and Xe-MRI were acquired from 15 stable pediatric CF patients and seven healthy age-matched participants on two visits, 1 month apart. Same-visit MRI scans were also performed on a subgroup of the CF patients. Following the PREFUL algorithm, regional ventilation (RVent) and regional flow volume loop cross-correlation maps were determined from the free-breathing data. Ventilation defect percentage (VDP) was determined from RVent maps (VDPRVent ), regional flow volume loop cross-correlation maps (VDPCC ), VDPRVent ∪ VDPCC , and multi-slice Xe-MRI. Repeatability was evaluated using Bland-Altman analysis, coefficient of repeatability (CR), and intraclass correlation. RESULTS: Minimal bias and no significant differences were reported for all PREFUL MRI and Xe-MRI VDP parameters between intra- and intervisits (all P > 0.05). Repeatability of VDPRVent , VDPCC , VDPRVent ∪ VDPCC , and multi-slice Xe-MRI were lower between the two-visit scans (CR = 14.81%, 15.36%, 16.19%, and 9.32%, respectively) in comparison to the same-day scans (CR = 3.38%, 2.90%, 1.90%, and 3.92%, respectively). pulmonary function tests showed high interscan repeatability relative to PREFUL MRI and Xe-MRI. CONCLUSION: PREFUL MRI, similar to Xe-MRI, showed high intravisit repeatability but moderate intervisit repeatability in CF, which may be due to inherent disease instability, even in stable patients. Thus, PREFUL MRI may be considered a suitable outcome measure for future treatment response studies.


Subject(s)
Cystic Fibrosis , Humans , Child , Cystic Fibrosis/diagnostic imaging , Respiration , Lung/diagnostic imaging , Respiratory Function Tests , Xenon Isotopes , Magnetic Resonance Imaging , Xenon
8.
J Med Virol ; 95(2): e28388, 2023 02.
Article in English | MEDLINE | ID: mdl-36477880

ABSTRACT

Most laboratory models of head and neck squamous cell cancer (HNSCC) rely on established immortalized cell lines, which carry inherent bias due to selection and clonality. We established a robust panel of HNSCC tumor cultures using a "conditional reprogramming" (CR) method, which utilizes a rho kinase inhibitor (Y-27632) and co-culture with irradiated fibroblast (J2 strain) feeder cells to support indefinite tumor cell survival. Sixteen CR cultures were successfully generated from 19 consecutively enrolled ethnically and racially diverse patients with HNSCC at a tertiary care center in the Bronx, NY. Of the 16 CR cultures, 9/16 were derived from the oral cavity, 4/16 were derived from the oropharynx, and 3/16 were from laryngeal carcinomas. Short tandem repeat (STR) profiling was used to validate culture against patient tumor tissue DNA. All CR cultures expressed ΔNp63 and cytokeratin 5/6, which are markers of squamous identity. Human papillomavirus (HPV) testing was assessed utilizing clinical p16 staining on primary tumors, reverse transcription polymerase chain reaction (RT-PCR) of HPV16/18-specific viral oncogenes E6 and E7 in RNA extracted from tumor samples, and HPV DNA sequencing. Three of four oropharyngeal tumors were p16 and HPV-positive and maintained HPV in culture. CR cultures were able to establish three-dimensional spheroid and murine flank and orthotopic tongue models. CR methods can be readily applied to all HNSCC tumors regardless of patient characteristics, disease site, and molecular background, providing a translational research model that properly includes patient and tumor diversity.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Animals , Humans , Mice , Carcinoma, Squamous Cell/pathology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Squamous Cell Carcinoma of Head and Neck , Biological Specimen Banks
9.
J Magn Reson Imaging ; 58(3): 936-948, 2023 09.
Article in English | MEDLINE | ID: mdl-36786650

ABSTRACT

BACKGROUND: Multiple-breath washout (MBW) 129 Xe MRI (MBW Xe-MRI) is a promising technique for following pediatric cystic fibrosis (CF) lung disease progression. However, its repeatability in stable CF needs to be established to use it as an outcome measure for novel therapies. PURPOSE: To assess intravisit and intervisit repeatability of MBW Xe-MRI in healthy and CF children. STUDY TYPE: Prospective, longitudinal cohort study. SUBJECTS: A total of 18 pediatric subjects (7 healthy, 11 CF). FIELD STRENGTH/SEQUENCE: A 3 T/2D coronal hyperpolarized (HP) 129 Xe images using GRE sequence. ASSESSMENT: All subjects completed MBW Xe-MRI, pulmonary function tests (PFTs) (spirometry, nitrogen [N2 ] MBW for lung clearance index [LCI]) and ventilation defect percent (VDP) at baseline (visit 1) and 1-month after. Fractional ventilation (FV), coefficient of variation (CoVFV ) maps were calculated from MBW Xe-MRI data acquired between intervening air washout breaths performed after an initial xenon breath-hold. Skewness of FV and CoVFV map distributions was also assessed. STATISTICAL TESTS: Repeatability: intraclass correlation coefficients (ICC), within-subject coefficient of variation (CV%), repeatability coefficient (CR). Agreement: Bland-Altman. For correlations between MBW Xe-MRI, VDP and PFTs: Spearman's correlation. Significance threshold: P < 0.05. RESULTS: For FV, intravisit median [IQR] ICC was high in both healthy (0.94 [0.48, 0.99]) and CF (0.83 [0.04, 0.97]) subjects. CoVFV also had good intravisit ICC in healthy (0.92 [0.42, 0.99]) and CF (0.79 [0.02, 0.96]) subjects. Similarly, for FV, intervisit ICC was high in health (0.94 [0.68, 0.99]) and CF (0.89 [0.61, 0.97]). CoVFV also had good intervisit ICC in health (0.92 [0.42, 0.99]) and CF (0.78 [0.26, 0.94]). FV had better intervisit repeatability than VDP. CoVFV correlated significantly with LCI (R = 0.56). Skewness of FV distributions significantly distinguished between cohorts at baseline. DATA CONCLUSION: MBW Xe-MRI had high intravisit and intervisit repeatability in healthy and stable CF subjects. CoVFV correlated with LCI, suggesting the importance of ventilation heterogeneity to early CF. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Cystic Fibrosis , Humans , Child , Cystic Fibrosis/diagnostic imaging , Xenon , Prospective Studies , Longitudinal Studies , Respiratory Function Tests/methods , Lung/diagnostic imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods
10.
Pediatr Res ; 94(5): 1684-1695, 2023 11.
Article in English | MEDLINE | ID: mdl-37349511

ABSTRACT

BACKGROUND: Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS: Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS: L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1ß, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION: L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT: The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Lung Injury , Pneumonia , Humans , Infant, Newborn , Female , Pregnancy , Animals , Rats , Animals, Newborn , Bronchopulmonary Dysplasia/metabolism , Lipopolysaccharides/pharmacology , Citrulline/pharmacology , Citrulline/metabolism , Lung , Pneumonia/metabolism , Inflammation/metabolism , Disease Models, Animal
11.
Pharm Stat ; 22(4): 605-618, 2023.
Article in English | MEDLINE | ID: mdl-36871961

ABSTRACT

The conventional phase II trial design paradigm is to make the go/no-go decision based on the hypothesis testing framework. Statistical significance itself alone, however, may not be sufficient to establish that the drug is clinically effective enough to warrant confirmatory phase III trials. We propose the Bayesian optimal phase II trial design with dual-criterion decision making (BOP2-DC), which incorporates both statistical significance and clinical relevance into decision making. Based on the posterior probability that the treatment effect reaches the lower reference value (statistical significance) and the clinically meaningful value (clinical significance), BOP2-DC allows for go/consider/no-go decisions, rather than a binary go/no-go decision. BOP2-DC is highly flexible and accommodates various types of endpoints, including binary, continuous, time-to-event, multiple, and coprimary endpoints, in single-arm and randomized trials. The decision rule of BOP2-DC is optimized to maximize the probability of a go decision when the treatment is effective or minimize the expected sample size when the treatment is futile. Simulation studies show that the BOP2-DC design yields desirable operating characteristics. The software to implement BOP2-DC is freely available at www.trialdesign.org.


Subject(s)
Decision Making , Research Design , Humans , Bayes Theorem , Computer Simulation , Sample Size , Clinical Trials, Phase II as Topic
12.
J Neurosci ; 41(36): 7546-7560, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34353899

ABSTRACT

Voltage-gated CaV2.2 calcium channels are expressed in nociceptors at presynaptic terminals, soma, and axons. CaV2.2 channel inhibitors applied to the spinal cord relieve pain in humans and rodents, especially during pathologic pain, but a biological function of nociceptor CaV2.2 channels in processing of nociception, outside presynaptic terminals in the spinal cord, is underappreciated. Here, we demonstrate that functional CaV2.2 channels in peripheral axons innervating skin are required for capsaicin-induced heat hypersensitivity in male and female mice. We show that CaV2.2 channels in TRPV1-nociceptor endings are activated by capsaicin-induced depolarization and contribute to increased intracellular calcium. Capsaicin induces hypersensitivity of both thermal nociceptors and mechanoreceptors, but only heat hypersensitivity depends on peripheral CaV2.2 channel activity, and especially a cell-type-specific CaV2.2 splice isoform. CaV2.2 channels at peripheral nerve endings might be important therapeutic targets to mitigate certain forms of chronic pain.SIGNIFICANCE STATEMENT It is generally assumed that nociceptor termini in the spinal cord dorsal horn are the functionally significant sites of CaV2.2 channel in control of transmitter release and the transmission of sensory information from the periphery to central sites. We show that peripheral CaV2.2 channels are essential for the classic heat hypersensitivity response to develop in skin following capsaicin exposure. This function of CaV2.2 is highly selective for heat, but not mechanical hypersensitivity induced by capsaicin exposure, and is not a property of closely related CaV2.1 channels. Our findings suggest that interrupting CaV2.2-dependent calcium entry in skin might reduce heat hypersensitivity that develops after noxious heat exposure and may limit the degree of heat hypersensitivity associated with certain other forms of pain.


Subject(s)
Calcium Channels, N-Type/metabolism , Calcium/metabolism , Hyperalgesia/metabolism , Neurons/physiology , Nociceptors/physiology , Presynaptic Terminals/metabolism , Skin/innervation , Spinal Cord Dorsal Horn/metabolism , Animals , Hot Temperature , Mice , Nociception/physiology , Physical Stimulation , Skin/metabolism , Synaptic Transmission/physiology
13.
Circulation ; 144(19): 1567-1583, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34647815

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease. METHODS: We profiled differences in RNA transcript expression in patients with advanced carotid artery atherosclerotic lesions from the Biobank of Karolinska Endarterectomies. The lncRNA MIAT was identified as the most upregulated noncoding RNA transcript in carotid plaques compared with nonatherosclerotic control arteries, which was confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. RESULTS: Experimental knockdown of MIAT, using site-specific antisense oligonucleotides (LNA-GapmeRs) not only markedly decreased proliferation and migration rates of cultured human carotid artery smooth muscle cells (SMCs) but also increased their apoptosis. MIAT mechanistically regulated SMC proliferation through the EGR1 (Early Growth Response 1)-ELK1 (ETS Transcription Factor ELK1)-ERK (Extracellular Signal-Regulated Kinase) pathway. MIAT is further involved in SMC phenotypic transition to proinflammatory macrophage-like cells through binding to the promoter region of KLF4 and enhancing its transcription. Studies using Miat-/- and Miat-/-ApoE-/- mice, and Yucatan LDLR-/- mini-pigs, as well, confirmed the regulatory role of this lncRNA in SMC de- and transdifferentiation and advanced atherosclerotic lesion formation. CONCLUSIONS: The lncRNA MIAT is a novel regulator of cellular processes in advanced atherosclerosis that controls proliferation, apoptosis, and phenotypic transition of SMCs, and the proinflammatory properties of macrophages, as well.


Subject(s)
Atherosclerosis/genetics , Plaque, Atherosclerotic/genetics , RNA, Long Noncoding/metabolism , Animals , Humans , Mice
14.
Magn Reson Med ; 87(4): 1971-1979, 2022 04.
Article in English | MEDLINE | ID: mdl-34841605

ABSTRACT

PURPOSE: To demonstrate the feasibility of 129 Xe chemical shift saturation recovery (CSSR) combined with spiral-IDEAL imaging for simultaneous measurement of the time-course of red blood cell (RBC) and brain tissue signals in the rat brain. METHODS: Images of both the RBC and brain tissue 129 Xe signals from the brains of five rats were obtained using interleaved spiral-IDEAL imaging following chemical shift saturation pulses applied at multiple CSSR delay times, τ. A linear fit of the signals to τ was used to calculate the slope of the signal for both RBC and brain tissue compartments on a voxel-by-voxel basis. Gas transfer was evaluated by measuring the ratio of the whole brain tissue-to-RBC signal intensities as a function of τ. To investigate the relationship between the CSSR images and gas transfer in the brain, the experiments were repeated during hypercapnic ventilation. RESULTS: Hypercapnia, affected the ratio of the tissue-to-RBC signal intensity (p = 0.026), consistent with an increase in gas transfer. CONCLUSION: CSSR with spiral-IDEAL imaging is feasible for acquisition of 129 Xe RBC and brain tissue time-course images in the rat brain. Differences in the time-course of the signal intensity ratios are consistent with gas transfer changes expected under hypercapnic conditions.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Animals , Brain/diagnostic imaging , Lung , Magnetic Resonance Imaging/methods , Rats , Respiration
15.
Heart Fail Rev ; 27(5): 1567-1578, 2022 09.
Article in English | MEDLINE | ID: mdl-35112265

ABSTRACT

Cardiac involvement occurs in light-chain (AL), transthyretin wild-type (wtATTR), and hereditary (hATTR) amyloidosis; other types of amyloidosis account for < 5% of all cardiac amyloidosis (CA). CA can present subclinically on screening, insidiously with symptoms such as exertional dyspnea, or abruptly as cardiogenic shock. Initially, CA patients were thought to be poor candidates for transplant due to short long-term survival; however, there is a marked improvement in heart and multi-organ transplant outcomes over the past 10 years with newer treatments and improvements in support with temporary and durable mechanical circulatory support while awaiting transplant. Patients with AL CA were reported to have worse post-OHT outcomes than patients with ATTR CA, but this gap is quickly closing with improved patient selection, novel chemotherapeutics, and perhaps with selected use of bone marrow transplantation. Waitlist mortality and transplantation rates have markedly improved for CA after the United Network for Organ Sharing (UNOS) policy change in October 2018. In this review, we will evaluate contemporary data from the last 5 years on advances in the field of transplantation and mechanical circulatory support in this patient population.


Subject(s)
Amyloidosis , Heart Failure , Heart Transplantation , Heart Failure/etiology , Heart Failure/therapy , Humans
16.
Blood ; 135(19): 1650-1660, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32076701

ABSTRACT

We previously reported durable responses in relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) patients treated with CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell immunotherapy after ibrutinib failure. Because preclinical studies showed that ibrutinib could improve CAR T cell-antitumor efficacy and reduce cytokine release syndrome (CRS), we conducted a pilot study to evaluate the safety and feasibility of administering ibrutinib concurrently with CD19 CAR T-cell immunotherapy. Nineteen CLL patients were included. The median number of prior therapies was 5, and 17 patients (89%) had high-risk cytogenetics (17p deletion and/or complex karyotype). Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion. CD19 CAR T-cell therapy with concurrent ibrutinib was well tolerated; 13 patients (68%) received ibrutinib as planned without dose reduction. The 4-week overall response rate using 2018 International Workshop on CLL (iwCLL) criteria was 83%, and 61% achieved a minimal residual disease (MRD)-negative marrow response by IGH sequencing. In this subset, the 1-year overall survival and progression-free survival (PFS) probabilities were 86% and 59%, respectively. Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion. The 1-year PFS probabilities in all evaluable patients were 38% and 50% after CD19 CAR T-cell therapy, with and without concurrent ibrutinib, respectively (P = .91). CD19 CAR T cells with concurrent ibrutinib for R/R CLL were well tolerated, with low CRS severity, and led to high rates of MRD-negative response by IGH sequencing.


Subject(s)
Adenine/analogs & derivatives , Antigens, CD19/immunology , Drug Resistance, Neoplasm , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Piperidines/therapeutic use , Receptors, Antigen, T-Cell/immunology , Salvage Therapy , Adenine/therapeutic use , Adult , Aged , Combined Modality Therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Retrospective Studies
17.
J Neurooncol ; 156(1): 49-59, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34661791

ABSTRACT

INTRODUCTION: Despite manifold advances in oncology, cancers of the central nervous system remain among the most lethal. Unique features of the brain, including distinct cellular composition, immunological privilege, and physical barriers to therapeutic delivery, likely contribute to the poor prognosis of patients with neuro-oncological disease. Focused ultrasound is an emerging technology that allows transcranial delivery of ultrasound energy to focal brain targets with great precision. METHODS: A review of the clinical and preclinical focused ultrasound literature was performed to obtain data regarding the current state of the focused ultrasound in context of neuro-oncology. A narrative review was then constructed to provide an overview of current and future applications of this technology. RESULTS: Focused ultrasound can facilitate direct control of tumors by thermal or mechanical ablation, as well as enhance delivery of diverse therapeutics by disruption of the blood-brain barrier without local tissue damage. Indeed, ultrasound-sensitive drug formulations or sonosensitizers may be combined with ultrasound blood-brain barrier disruption to achieve high local drug concentration while limiting systemic exposure to therapeutics. Furthermore, focused ultrasound can induce radiosensitization, immunomodulation, and neuromodulation. Here we review applications of focused ultrasound with a focus on approaches currently under clinical investigation for the treatment of neuro-oncological disease, such as blood-brain barrier disruption for drug delivery and thermal ablation. We also discuss design of clinical trials, selection of patient cohorts, and emerging approaches to improve the efficacy of transcranial ultrasound, such as histotripsy, as well as combinatorial strategies to exploit synergistic biological effects of existing cancer therapies and ultrasound. CONCLUSIONS: Focused ultrasound is a promising and actively expanding therapeutic modality for diverse neuro-oncological diseases.


Subject(s)
Nervous System Neoplasms , Ultrasonic Therapy , Humans , Medical Oncology , Nervous System Neoplasms/therapy , Neurology
18.
Stat Med ; 41(11): 1918-1931, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35098585

ABSTRACT

In the era of immunotherapies and targeted therapies, the focus of early phase clinical trials has shifted from finding the maximum tolerated dose to identifying the optimal biological dose (OBD), which maximizes the toxicity-efficacy trade-off. One major impediment to using adaptive designs to find OBD is that efficacy or/and toxicity are often late-onset, hampering the designs' real-time decision rules for treating new patients. To address this issue, we propose the model-assisted TITE-BOIN12 design to find OBD with late-onset toxicity and efficacy. As an extension of the BOIN12 design, the TITE-BOIN12 design also uses utility to quantify the toxicity-efficacy trade-off. We consider two approaches, Bayesian data augmentation and an approximated likelihood method, to enable real-time decision making when some patients' toxicity and efficacy outcomes are pending. Extensive simulations show that, compared to some existing designs, TITE-BOIN12 significantly shortens the trial duration while having comparable or higher accuracy to identify OBD and a lower risk of overdosing patients. To facilitate the use of the TITE-BOIN12 design, we develop a user-friendly software freely available at http://www.trialdesign.org.


Subject(s)
Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Research Design , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Humans , Immunotherapy/adverse effects , Maximum Tolerated Dose
19.
Orbit ; : 1-7, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36052515

ABSTRACT

The current case presentation highlights the potential of cemiplimab, a programmed cell death protein-1 (PD-1) inhibitor, as first-line treatment for periocular metastatic cutaneous squamous cell carcinoma (SCC) without requiring curative surgery or radiotherapy. A 64-year-old male presented with a progressing 4.5 × 3.0 cm left upper eyelid lesion initially diagnosed as psoriasis. Work-up revealed cutaneous SCC with tumor invasion into extraconal fat and lacrimal gland, and metastasis to the left parotid lymph node. The patient also presented with a suspicious lesion on his left medial thigh found to be a second primary on pathology. To avoid orbital exenteration and treat the multifocal disease, the patient was started on intravenous cemiplimab immunotherapy. Following six doses, repeated FGD-PET-CT revealed a complete response of the left eyelid lesion and residual low-grade hypermetabolic activity of the left medial thigh lesion. Biopsy confirmed chronic inflammation and fibrosis with no signs of malignancy. This unique case with dual primary cutaneous SCC provides support for cemiplimab in treating locally invasive periocular SCC, and potentially abrogating the need for highly morbid exenteration procedures to preserve binocular vision.

20.
J Biol Chem ; 295(13): 4350-4358, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32060096

ABSTRACT

The metalloprotease ADAM17 (a disintegrin and metalloprotease 17) is a key regulator of tumor necrosis factor α (TNFα), interleukin 6 receptor (IL-6R), and epidermal growth factor receptor (EGFR) signaling. ADAM17 maturation and function depend on the seven-membrane-spanning inactive rhomboid-like proteins 1 and 2 (iRhom1/2 or Rhbdf1/2). Most studies to date have focused on overexpressed iRhom1 and -2, so only little is known about the properties of the endogenous proteins. Here, we show that endogenous iRhom1 and -2 can be cell surface-biotinylated on mouse embryonic fibroblasts (mEFs), revealing that endogenous iRhom1 and -2 proteins are present on the cell surface and that iRhom2 also is present on the surface of lipopolysaccharide-stimulated primary bone marrow-derived macrophages. Interestingly, very little, if any, iRhom2 was detectable in mEFs or bone marrow-derived macrophages lacking ADAM17, suggesting that iRhom2 is stabilized by ADAM17. By contrast, the levels of iRhom1 were slightly increased in the absence of ADAM17 in mEFs, indicating that its stability does not depend on ADAM17. These findings support a model in which iRhom2 and ADAM17 are obligate binding partners and indicate that iRhom2 stability requires the presence of ADAM17, whereas iRhom1 is stable in the absence of ADAM17.


Subject(s)
ADAM17 Protein/genetics , Carrier Proteins/genetics , Membrane Proteins/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Cell Membrane , ErbB Receptors/genetics , Fibroblasts/metabolism , Gene Expression Regulation/genetics , Humans , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Receptors, Interleukin-6/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL