Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840042

ABSTRACT

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Subject(s)
Broussonetia , Metallothionein , Metals, Heavy , Phylogeny , Metallothionein/genetics , Metallothionein/metabolism , Metallothionein/chemistry , Metals, Heavy/metabolism , Broussonetia/genetics , Broussonetia/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Stress, Physiological , Amino Acid Sequence , Protein Binding
2.
Prostate ; 84(1): 100-110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37796107

ABSTRACT

BACKGROUND: Androgen receptor (AR) pathway inhibition remains the cornerstone for prostate cancer therapies. However, castration-resistant prostate cancer (CRPC) tumors can resist AR signaling inhibitors through AR amplification and AR splice variants in AR-positive CRPC (ARPC), and conversion to AR-null phenotypes, such as double-negative prostate cancer (DNPC) and small cell or neuroendocrine prostate cancer (SCNPC). We have shown previously that DNPC can bypass AR-dependence through fibroblast growth factor receptor (FGFR) signaling. However, the role of the FGFR pathway in other CRPC phenotypes has not been elucidated. METHODS: RNA-Seq analysis was conducted on patient metastases, LuCaP patient-derived xenograft (PDX) models, and CRPC cell lines. Cell lines (C4-2B, VCaP, and 22Rv1) and ex vivo LuCaP PDX tumor cells were treated with enzalutamide (ENZA) and FGFR inhibitors (FGFRi) alone or in combination and sensitivity was determined using cell viability assays. In vivo efficacy of FGFRi in ARPC, DNPC, and SCNPC were evaluated using PDX models. RESULTS: RNA-Seq analysis of FGFR signaling in metastatic specimens, LuCaP PDX models, and CRPC cell lines revealed significant FGF pathway activation in AR-low PC (ARLPC), DNPC, and SCNPC tumors. In vitro/ex vivo analysis of erdafitinib and CH5183284 demonstrated robust and moderate growth suppression of ARPC, respectively. In vivo studies using four ARPC PDX models showed that combination ENZA and CH5183284 significantly suppressed tumor growth. Additional in vivo studies using four ARPC PDX models revealed that erdafitinib monotherapy was as effective as ENZA in suppressing tumor growth, and there was limited combination benefit. Furthermore, two of three DNPC models and two of four SCNPC models responded to CH5183284 monotherapy, suggesting FGFRi responses were model dependent. RNA-Seq and gene set enrichment analysis of end-of-study ARPC tumors treated with FGFRi displayed decreased expression of E2F and MYC target genes and suppressed G2M checkpoint genes, whereas end-of-study SCNPC tumors had heterogeneous transcriptional responses. CONCLUSIONS: Although FGFRi treatments suppressed tumor growth across CRPC phenotypes, our analyses did not identify a single pathway or biomarker that would identify tumor response to FGFRi. This is very likely due to the array of FGFR1-4 expression and tumor phenotypes present in CRPC. Nevertheless, our data nominate the FGFR pathway as a clinically actionable target that promotes tumor growth in diverse phenotypes of treatment-refractory metastatic CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Signal Transduction , Cell Line, Tumor , Nitriles/pharmacology
3.
EMBO Rep ; 23(5): e53937, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35312140

ABSTRACT

LincRNA-EPS is an important regulator in inflammation. However, the role of lincRNA-EPS in the host response against viral infection is unexplored. Here, we show that lincRNA-EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV-1. Overexpression of lincRNA-EPS facilitates viral infection, while deficiency of lincRNA-EPS protects the host against viral infection in vitro and in vivo. LincRNA-EPS-/- macrophages show elevated expression of antiviral interferon-stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN-ß, the key upstream inducer of these ISGs, is downregulated in lincRNA-EPS-/- macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA-EPS binds to PKR and antagonizes the viral RNA-PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN-I induction. LincRNA-EPS inhibits PKR-STAT1-ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA-EPS promoting the induction of PKR-STAT1-dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.


Subject(s)
RNA, Long Noncoding , Antiviral Agents , Immunity, Innate , Interferon-beta/genetics , Interferons , RNA, Long Noncoding/genetics , RNA, Viral/metabolism
4.
J Virol ; 96(17): e0077422, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35972291

ABSTRACT

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Interferon Regulatory Factor-1 , RNA Virus Infections , RNA Viruses , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-1/immunology , Mice , Mice, Knockout , RNA Virus Infections/immunology , Virus Replication
5.
J Immunol ; 207(11): 2699-2709, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34750204

ABSTRACT

IFN-γ-inducible protein 16 (IFI16) recognizes viral DNAs from both nucleus-replicating viruses and cytoplasm-replicating viruses. Isoform 2 of IFI16 (IFI16-iso2) with nuclear localization sequence (NLS) has been studied extensively as a well-known DNA sensor. However, the characteristics and functions of other IFI16 isoforms are almost unknown. Here, we find that IFI16-iso1, with exactly the same length as IFI16-iso2, lacks the NLS and locates in the cytoplasm. To distinguish the functions of IFI16-iso1 and IFI16-iso2, we have developed novel nuclear viral DNA mimics that can be recognized by the nuclear DNA sensors, including IFI16-iso2 and hnRNPA2B1. The hexanucleotide motif 5'-AGTGTT-3' DNA form of the nuclear localization sequence (DNLS) effectively drives cytoplasmic viral DNA nuclear translocation. These nuclear viral DNA mimics potently induce IFN-ß and antiviral IFN-stimulated genes in human A549 cells, HEK293T cells, and mouse macrophages. The subcellular location difference of IFI16 isoforms determines their differential functions in recognizing viral DNA and activating type I IFN-dependent antiviral immunity. IFI16-iso1 preferentially colocalizes with cytoplasmic HSV60mer and cytoplasm-replicating vaccinia virus (VACV), whereas IFI16-iso2 mainly colocalizes with nuclear HSV60-DNLS and nucleus-replicating HSV-1. Compared with IFI16-iso2, IFI16-iso1 induces more transcription of IFN-ß and IFN-stimulated genes, as well as stronger antiviral immunity upon HSV60mer transfection or VACV infection. IFI16-iso2, with the ability of nuclear-cytoplasmic shuttling, clears both invaded HSV type 1 and VACV significantly. However, IFI16-iso2 induces more type I IFN-dependent antiviral immunity than IFI16-iso1 upon HSV60-DNLS transfection or HSV type 1 infection. Our study has developed potent agonists for nuclear DNA sensors and also has demonstrated that IFI16 isoforms with cytoplasmic and nuclear locations play differential roles in innate immunity against DNA viruses.


Subject(s)
Cell Nucleus/immunology , DNA Viruses/immunology , Nuclear Proteins/immunology , Phosphoproteins/immunology , Cells, Cultured , Humans , Protein Isoforms/immunology
6.
J Biol Chem ; 297(2): 100930, 2021 08.
Article in English | MEDLINE | ID: mdl-34216619

ABSTRACT

Interferon-γ-inducible factor 16 (IFI16) triggers stimulator of interferon (IFN) genes (STING)-dependent type I IFN production during host antiviral immunity and facilitates p53-dependent apoptosis during suppressing tumorigenesis. We have previously reported that STING-mediated IFI16 degradation negatively regulates type I IFN production. However, it is unknown whether STING also suppresses IFI16/p53-dependent apoptosis via degradation of IFI16. Here, our results from flow cytometry apoptosis detection and immunoblot assays show that IFI16 and nutlin-3, a p53 pathway activator, synergistically induce apoptosis in U2OS and A549 cells. Protein kinase R-triggered phosphorylation of p53 at serine 392 is critical for the IFI16-p53-dependent apoptosis. However, overexpression of STING suppresses p53 serine 392 phosphorylation, p53 transcriptional activity, expression of p53 target genes, and p53-dependent mitochondrial depolarization and apoptosis. In summary, our current study demonstrates that STING-mediated IFI16 degradation negatively regulates IFI16-mediated p53-dependent apoptosis in osteosarcoma and non-small cell lung cancer cells, which suggests a protumorigenic role for STING in certain cancer types because of its potent ability to degrade upstream IFI16.


Subject(s)
Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Tumor Suppressor Protein p53 , Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Drosophila Proteins , Humans , Immunity, Innate , Lung Neoplasms , Phosphorylation , Signal Transduction
7.
Immunology ; 163(2): 201-219, 2021 06.
Article in English | MEDLINE | ID: mdl-33512718

ABSTRACT

Acute pancreatitis (AP), an inflammatory disorder of the pancreas with a high hospitalization rate, frequently leads to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). However, therapeutic targets for effective treatment and early intervention of AP are still urgently required to be identified. Here, we have observed that the expression of pancreatic lincRNA-EPS, a long intergenic non-coding RNA, is dynamically changed during both caerulein-induced AP (Cer-AP) and sodium taurocholate-induced severe AP (NaTc-SAP). The expression pattern of lincRNA-EPS is negatively correlated with the typical inflammatory genes such as IL-6, IL-1ß, CXCL1, and CXCL2. Further studies indicate that knockout of lincRNA-EPS aggravates the pathological symptoms of AP including more induction of serum amylase and lipase, severe edema, inflammatory cells infiltration and acinar necrosis in both experimental AP mouse models. Besides these intrapancreatic effects, lincRNA-EPS also protects against tissue damages in the extra-pancreatic organs such as lung, liver, and gut in the NaTc-SAP mouse model. In addition, we have observed more serum pro-inflammatory cytokines TNF-α and IL-6 in the lincRNA-EPS-/- NaTc-SAP mice and more extracellular HMGB1 around injured acinar cells in the pancreas from lincRNA-EPS-/- NaTc-SAP mice, compared with their respective controls. Pharmacological inhibition of NF- κ B activity by BAY11-7082 significantly abolishes the suppressive effect of lincRNA-EPS on TLR4 ligand-induced inflammatory genes in macrophages. Our study has described a protective role of lincRNA-EPS in alleviating AP and SAP, outlined a novel pathway that lincRNA-EPS suppresses HMGB1-NF- κ B-dependent inflammatory response in pancreatic macrophages and provided a potential therapeutic target for SAP.


Subject(s)
Inflammation/genetics , Macrophages/physiology , Pancreas/pathology , Pancreatitis/genetics , RNA, Long Noncoding/genetics , Animals , Ceruletide , Disease Models, Animal , HEK293 Cells , HMGB1 Protein/metabolism , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , NF-kappa B/metabolism , Necrosis , Severity of Illness Index , Taurocholic Acid
8.
Ecotoxicol Environ Saf ; 228: 112945, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34737155

ABSTRACT

Juglans regia is a world-famous woody oil plant, whose yield and quality are affected by drought stress. Ethylene-responsive factors (ERFs) play vital role in plant stress response. In current study, to comprehend the walnut molecular mechanism of drought stress response, an ERF transcription factor was clarified from J. regia (JrERF2-2) and its potential function mechanism to drought was clarified. The results showed that JrERF2-2 could be induced significantly by drought. The transgenic Arabidopsis over-expression of JrERF2-2 displayed enhanced growth, antioxidant enzyme vitalities, reactive oxygen species scavenging and proline produce under drought stress. Especial the glutathione-S-transferase (GST) activity and most GST genes' transcription were elevated obviously. Yeast one-hybrid (Y1H) and co-transient expression (CTE) methods revealed that JrERF2-2 could recognize JrGST4, JrGST6, JrGST7, JrGST8, and JrGSTF8 by binding to GCC-box, and recognize JrGST11, JrGST12, and JrGSTN2 by binding to DRE motif. Meanwhile, the binding activity was strengthened by drought stress. Moreover, JrERF2-2 could interact with JrWRKY7 to promote plant drought tolerance; JrWRKY7 could also distinguish JrGST4, JrGST7, JrGST8, JrGST11, JrGST12, and JrGSTF8 via binding to W-Box motif. These results suggested that JrERF2-2 could effectively improve plant drought tolerance through interacting with JrWRKY7 to control the expression of GSTs. JrERF2-2 is a useful plant representative gene for drought response in molecular breeding.

9.
Physiol Mol Biol Plants ; 27(6): 1323-1335, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34177150

ABSTRACT

Walnut is a popular nut tree species and usually suffers from drought stress. However, little information is available on the mechanism of walnut responding to drought stress, resulting in lack of basic understanding for its resistance. In order to excavate more functional genes that can respond to stressors, and enrich the theoretical basis for walnut resistance, in this study, 5 MYB genes with complete ORFs were identified from J. regia and the basic bio-information as well as expression patterns in different tissues and response to drought and ABA stresses were confirmed using qRT-PCR assay. The results showed that 2 JrMYB genes belong to R1-MYB subfamily and 3 JrMYBs belong to R2R3-MYB, encoding the proteins from 212 to 362 aa in length. The phylogenetic analysis categorized proteins of 5 JrMYBs and 40 Arabidopsis AtMYBs into 10 subgroups. JrMYBs in the same subgroup exhibited significant similarities in the composition of conserved domains and motifs in amino acid sequences and exon/intron organization in DNA sequences. The results of qRT-PCR analysis revealed that JrMYB genes diversely expressed in various tissues. Moreover, the expression values of JrMYBs were upregulated or downregulated significantly under drought and ABA stresses. Most attractively, in contrast with suffering from drought stress alone, the treatments with drought and additional ABA greatly enhanced the transcript levels of JrMYBs. All these results suggested that JrMYB genes play a vital role in plant biological processes and drought as well as ABA stress response, and possibly perform as ABA-dependent drought response transcription factors in plant. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01008-z.

10.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Article in English | MEDLINE | ID: mdl-31527024

ABSTRACT

Azithromycin (AZM) is a widely used antibiotic, with additional antiviral and anti-inflammatory properties that remain poorly understood. Although Zika virus (ZIKV) poses a significant threat to global health, there are currently no vaccines or effective therapeutics against it. Herein, we report that AZM effectively suppresses ZIKV infection in vitro by targeting a late stage in the viral life cycle. Besides that, AZM upregulates the expression of host type I and III interferons and several of their downstream interferon-stimulated genes (ISGs) in response to ZIKV infection. In particular, we found that AZM upregulates the expression of MDA5 and RIG-I, pathogen recognition receptors (PRRs) induced by ZIKV infection, and increases the levels of phosphorylated TBK1 and IRF3. Interestingly, AZM treatment upregulates phosphorylation of TBK1, without inducing phosphorylation of IRF3 by itself. These findings highlight the potential use of AZM as a broad antiviral agent to combat viral infection and prevent ZIKV associated devastating clinical outcomes, such as congenital microcephaly.

11.
Physiol Plant ; 166(3): 748-761, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30187482

ABSTRACT

Glutathione S-transferases (GSTs) are important plant proteins involved in biotic and abiotic stress responses. A gene from Juglans regia, JrGSTTau1 was previously cloned and functionally characterized as an enzyme involved in improving cold tolerance in plants. To clarify the functional mechanism of JrGSTTau1 and its role in stress response, here, the JrGSTTau1 promoter including the up-stream regulators was examined using yeast one-hybrid together with transient expression assays, and the osmotic stress response ability was confirmed by comparing with wild-type plants. The 1500 bp JrGSTTau1 promoter displayed high GUS expression activity and was enhanced by mannitol stress. The promoter is composed of abundant cis-elements, some of which were osmotic stress response-related motifs, such as ABRE, DRE and MYB, indicating that the expression of JrGSTTau1 is regulated by potential up-stream regulators under abiotic stress. The transcription factors (TFs) of JrDREB2A, JrMYC2, JrMYB44, JrDof1 and JrWRKY7 were identified, which shared a similar response with JrGSTTau1 when exposed to PEG6000 in walnut leaf and root. These results implied that JrDREB2A, JrMYC2, JrMYB44, JrDof1 and JrWRKY7 may act as up-stream regulators of JrGSTTau1 to regulate or combine functionality with JrGSTTau1 in osmotic stress response. Furthermore, compared with the WT plants, the transgenic tobacco plants that overexpress JrGSTTau1 showed improved tolerance to drought induced by osmotic stress, in which antioxidant enzymes, proline and reactive oxygen species (ROS) are involved. Our results demonstrated the positive role played by JrGSTTau1 in osmotic tolerance, which is regulated by multiple up-stream regulators.


Subject(s)
Juglans/metabolism , Osmotic Pressure/physiology , Plant Proteins/metabolism , Gene Expression Regulation, Plant/physiology , Juglans/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
BMC Plant Biol ; 18(1): 367, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572834

ABSTRACT

BACKGROUND: GRAS transcription factor (TF) family is unique and numerous in higher plants with diverse functions that involving in plant growth and development processes, such as gibberellin (GA) signal transduction, root development, root nodule formation, and mycorrhiza formation. Walnut tree is exposed to various environmental stimulus that causing concern about its resistance mechanism. In order to understand the molecular mechanism of walnut to adversity response, a GRAS TF (JrGRAS2) was cloned and characterized from Juglans regia in this study. RESULTS: A 1500 bp promoter fragment of JrGRAS2 was identified from the genome of J. regia, in which the cis-elements were screened. This JrGRAS2 promoter displayed expression activity that was enhanced significantly by high temperature (HT) stress. Yeast one-hybrid assay, transient expression and chromatin immunoprecipitation (Chip)-PCR analysis revealed that JrDof3 could specifically bind to the DOFCOREZM motif and share similar expression patterns with JrGRAS2 under HT stress. The transcription of JrGRAS2 was induced by HT stress and up-regulated to 6.73-~11.96-fold in the leaf and 2.53-~4.50-fold in the root to control, respectively. JrGRAS2 was overexpressed in Arabidopsis, three lines with much high expression level of JrGRAS2 (S3, S7, and S8) were selected for HT stress tolerance analysis. Compared to the wild type (WT) Arabidopsis, S3, S7, and S8 exhibited enhanced seed germination rate, fresh weight accumulation, and activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione-S-transferase (GST) under HT stress. In contrast, the Evans blue staining, electrolyte leakage (EL) rates, hydrogen dioxide (H2O2) and malondialdehyde (MDA) content of transgenic seedlings were all lower than those of WT exposed to HT stress. Furthermore, the expression of heat shock proteins (HSPs) in S3, S7, and S8 was significant higher than those in WT plants. The similar results were obtained in JrGRAS2 transient overexpression walnut lines under normal and HT stress conditions. CONCLUSIONS: Our results suggested that JrDof3 TF contributes to improve the HT stress response of JrGRAS2, which could effectively control the expression of HSPs to enhance HT stress tolerance. JrGRAS2 is an useful candidate gene for heat response in plant molecular breeding.


Subject(s)
Heat-Shock Proteins/metabolism , Juglans/physiology , Plant Proteins/physiology , Transcription Factors/physiology , Antioxidants/metabolism , Chromatin Immunoprecipitation , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Heat-Shock Response , Juglans/genetics , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Thermotolerance , Transcription Factors/genetics , Two-Hybrid System Techniques
13.
Cancer Sci ; 108(11): 2130-2141, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28795470

ABSTRACT

Dermokine (DMKN) was first identified in relation to skin lesion healing and skin carcinoma. Recently, its expression was associated with pancreatic cancer tumorigenesis, although its involvement remains poorly understood. Herein, we showed that DMKN loss of function in Patu-8988 and PANC-1 pancreatic cancer cell lines resulted in reduced phosphorylation of signal transducer and activator of transcription 3, and increased activation of ERK1/2 and AKT serine/threonine kinase. This decreased the proliferation ability of pancreatic ductal adenocarcinoma (PDAC) cells. In addition, DMKN knockdown decreased the invasion and migration of PDAC cells, partially reversed the epithelial-mesenchymal transition, retarded tumor growth in a xenograft animal model by decreasing the density of microvessels, and attenuated the distant metastasis of human PDAC in a mouse model. Taken together, these data suggested that DMKN could be a potential prognostic biomarker and therapeutic target in pancreatic cancer.


Subject(s)
Biomarkers, Tumor/genetics , Pancreatic Neoplasms/genetics , Proteins/genetics , STAT3 Transcription Factor/genetics , Animals , Carcinogenesis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Knockdown Techniques , Humans , Intercellular Signaling Peptides and Proteins , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
J Bone Miner Res ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874138

ABSTRACT

Type I interferons (IFN-I) are pleiotropic factors endowed with multiple activities that play important roles in innate and adaptive immunity. Although many studies indicate IFN-I inducers exert favorable effects on broad-spectrum antivirus, immunomodulation, and anti-tumor by inducing endogenous IFN-I and IFN-stimulated genes (ISGs), their function in bone homeostasis still needs further exploration. Here, our study demonstrates two distinct IFN-I inducers, diABZI and poly(I:C), as potential therapeutics to alleviate osteolysis and osteoporosis. Firstly, IFN-I inducers suppress the genes that control osteoclast (OC) differentiation and activity in vitro. Moreover, diABZI alleviates bone loss in Ti particle-induced osteolysis and ovariectomized (OVX)-induced osteoporosis in vivo by inhibiting OC differentiation and function. In addition, the inhibitory effects of IFN-I inducers on OC differentiation are not observed in macrophages derived from Ifnar1-/- mice, which indicate that the suppressive effect of IFN-I inducers on OC is IFNAR-dependent. Mechanistically, RNAi-mediated silencing of IRF7 and IFIT3 in OC precursors impair the suppressive effect of the IFN-I inducers on OC differentiation. Taken together, these results demonstrate that IFN-I inducers play a protective role in bone turnover by limiting osteoclastogenesis and bone resorption through the induction of OC-specific mediators via the IFN-ß signaling pathway.

15.
Cell Rep ; 43(3): 113945, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483900

ABSTRACT

U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , DEAD Box Protein 58/metabolism , Immunity, Innate , RNA, Small Nuclear , Ubiquitination , Tripartite Motif Proteins/metabolism
16.
Nat Commun ; 14(1): 7435, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973913

ABSTRACT

SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.


Subject(s)
Prostatic Neoplasms , Animals , Humans , Male , Mice , Cell Transformation, Neoplastic/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Tudor Domain
17.
Cancer Res ; 83(17): 2938-2951, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37352376

ABSTRACT

The androgen receptor (AR) pathway regulates key cell survival programs in prostate epithelium. The AR represents a near-universal driver and therapeutic vulnerability in metastatic prostate cancer, and targeting AR has a remarkable therapeutic index. Though most approaches directed toward AR focus on inhibiting AR signaling, laboratory and now clinical data have shown that high dose, supraphysiological androgen treatment (SPA) results in growth repression and improved outcomes in subsets of patients with prostate cancer. A better understanding of the mechanisms contributing to SPA response and resistance could help guide patient selection and combination therapies to improve efficacy. To characterize SPA signaling, we integrated metrics of gene expression changes induced by SPA together with cistrome data and protein-interactomes. These analyses indicated that the dimerization partner, RB-like, E2F, and multivulval class B (DREAM) complex mediates growth repression and downregulation of E2F targets in response to SPA. Notably, prostate cancers with complete genomic loss of RB1 responded to SPA treatment, whereas loss of DREAM complex components such as RBL1/2 promoted resistance. Overexpression of MYC resulted in complete resistance to SPA and attenuated the SPA/AR-mediated repression of E2F target genes. These findings support a model of SPA-mediated growth repression that relies on the negative regulation of MYC by AR leading to repression of E2F1 signaling via the DREAM complex. The integrity of MYC signaling and DREAM complex assembly may consequently serve as determinants of SPA responses and as pathways mediating SPA resistance. SIGNIFICANCE: Determining the molecular pathways by which supraphysiological androgens promote growth arrest and treatment responses in prostate cancer provides opportunities for biomarker-selected clinical trials and the development of strategies to augment responses.


Subject(s)
Androgens , Prostatic Neoplasms , Male , Humans , Androgens/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Cell Line, Tumor
18.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333335

ABSTRACT

The crosstalk between prostate cancer (PCa) cells and the tumor microenvironment plays a pivotal role in disease progression and metastasis and could provide novel opportunities for patient treatment. Macrophages are the most abundant immune cells in the prostate tumor microenvironment (TME) and are capable of killing tumor cells. To identify genes in the tumor cells that are critical for macrophage-mediated killing, we performed a genome-wide co-culture CRISPR screen and identified AR, PRKCD, and multiple components of the NF-κB pathway as hits, whose expression in the tumor cell are essential for being targeted and killed by macrophages. These data position AR signaling as an immunomodulator, and confirmed by androgen-deprivation experiments, that rendered hormone-deprived tumor cells resistant to macrophage-mediated killing. Proteomic analyses showed a downregulation of oxidative phosphorylation in the PRKCD- and IKBKG-KO cells compared to the control, suggesting impaired mitochondrial function, which was confirmed by electron microscopy analyses. Furthermore, phosphoproteomic analyses revealed that all hits impaired ferroptosis signaling, which was validated transcriptionally using samples from a neoadjuvant clinical trial with the AR-inhibitor enzalutamide. Collectively, our data demonstrate that AR functions together with the PRKCD and the NF-κB pathway to evade macrophage-mediated killing. As hormonal intervention represents the mainstay therapy for treatment of prostate cancer patients, our findings may have direct implications and provide a plausible explanation for the clinically observed persistence of tumor cells despite androgen deprivation therapy.

19.
Nat Cell Biol ; 25(12): 1821-1832, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049604

ABSTRACT

Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.


Subject(s)
Monocarboxylic Acid Transporters , Prostate , Male , Humans , Prostate/metabolism , Monocarboxylic Acid Transporters/metabolism , Cell Differentiation/physiology , Epithelial Cells/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/metabolism , Lactates/metabolism
20.
Cancer Res Commun ; 3(11): 2358-2374, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37823778

ABSTRACT

Castration-resistant prostate cancer (CRPC) consists of multiple phenotypic subtypes including androgen receptor (AR)-active prostate cancer (ARPC) and neuroendocrine prostate cancer (NEPC). Tumor cells with these phenotypes can coexist between metastases within a patient and within an individual tumor. Treatments that are effective across CRPC subtypes are currently lacking. Histone deacetylation is crucial for the regulation of chromatin structure and maintenance of cancer cell state and activation of the PI3K/AKT/mTOR signaling cascade is a tumor growth-promoting pathway. We therefore investigated combined targeting of histone deacetylase (HDAC) and PI3K using a rationally designed dual inhibitor, fimepinostat, in CRPC subtypes in vitro and in vivo. Dual HDAC1/2 and PI3K/AKT pathway inhibition by fimepinostat led to robust tumor growth inhibition in both ARPC and NEPC models including cell line- and patient-derived xenografts. HDAC1/2 inhibition combined with PI3K/AKT inhibition was more effective than targeting each pathway alone, producing growth inhibitory effects through cell-cycle inhibition and apoptosis. Molecular profiling revealed on-target effects of combined HDAC1/2 and PI3K/AKT inhibition independent of tumor phenotype. Fimepinostat therapy was also associated with the suppression of lineage transcription factors including AR in ARPC and Achaete-scute homolog 1 (ASCL1) in NEPC. Together, these results indicate that fimepinostat represents a novel therapeutic that may be effective against both ARPC and NEPC through CRPC subtype-dependent and -independent mechanisms. SIGNIFICANCE: CRPC is a heterogeneous disease constituting multiple phenotypic subtypes that often co-occur within tumors or across metastases in patients. Existing targeted therapies for CRPC do not take this into account. Here we show that fimepinostat, a dual HDAC1/2 and PI3K/AKT inhibitor investigated clinically in other cancer types but not prostate cancer, may overcome this heterogeneity by effectively inhibiting both ARPC and NEPC subtypes of CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Histone Deacetylases/genetics , Phenotype , Castration
SELECTION OF CITATIONS
SEARCH DETAIL