Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Biol Reprod ; 109(3): 319-329, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37402702

ABSTRACT

Infertility is a public health concern worldwide. Asthenozoospermia is a common cause of male infertility and is characterized by decreased motility. Sperm motility ensures that sperm migrate to complete fertilization. Macrophages are an essential component of innate immunity in the female reproductive tract. Macrophage extracellular traps are induced by various microorganisms to capture and mediate the clearance of microorganisms. The relationship between sperm and macrophage extracellular traps is unclear. The human monocyte leukemia (THP-1) cells differentiated by phorbol myristate acetate (PMA) are widely used as surrogate of human macrophages. This study investigated sperm-induced macrophage extracellular trap formation and clarified some of the mechanisms affecting macrophage extracellular trap production. Sperm-induced macrophage extracellular traps were visualized and components of macrophage extracellular traps were identified by immunofluorescence analyses and scanning electron microscopy. By inhibiting macrophage extracellular trap production and macrophage phagocytosis, the relationship between macrophage phagocytosis and macrophage extracellular trap production was analyzed. Sperm could trigger PMA-differentiated THP-1 macrophages to produce extracellular traps. Sperm-triggered macrophage extracellular traps are dependent on phagocytosis and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Sperm from asthenozoospermia donors are more likely to be phagocytosed by macrophages than sperm from healthy donors, which induce more macrophage extracellular trap release. These data confirm the phenomenon and partial mechanism of sperm-induced macrophage extracellular trap formation in vitro. These may partly provide evidence to explain the mechanisms of clearing abnormally morphological or hypomotile sperm in the female reproductive tract and the rationale for the decreased probability of successful fertilization in asthenozoospermia.


Subject(s)
Asthenozoospermia , Extracellular Traps , Male , Female , Humans , Sperm Motility , Semen , Macrophages , Phagocytosis , Spermatozoa
2.
J Exp Bot ; 74(12): 3531-3543, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36964902

ABSTRACT

Lack of phosphorus (P) is a major environmental factor affecting rapeseed (Brassica napus. L) root growth and development. For breeding purposes, it is crucial to identify the molecular mechanisms underlying root system architecture traits that confer low-P tolerance in rapeseed. Natural variations in the glycine-rich protein gene BnGRP1 were analysed in the natural population of 400 rapeseed cultivars under low-P stress through genome-wide association study and transcriptome analysis. Based on 11 single nucleotide polymorphism mutations in the BnGRP1 sequence, 10 haplotypes (Hap) were formed. Compared with the other types, the cultivar BnGRP1Hap1 in the panel demonstrated the longest root length and heaviest root weight. BnGRP1Hap1 overexpression in rapeseed led to enhanced low-P tolerance. CRISPR/Cas9-derived BnGRP1Hap4 knockout mutations in rapeseed can lead to sensitivity to low-P stress. Furthermore, BnGRP1Hap1 influences the expression of the phosphate transporter 1 gene (PHT1) associated with P absorption. Overall, the findings of this study highlight new insights into the mechanisms of GRP1 enhancement of low-P tolerance in rapeseed.


Subject(s)
Brassica napus , Brassica napus/metabolism , Genome-Wide Association Study , Plant Breeding , Mutation , Phosphorus/metabolism , Glycine/genetics , Glycine/metabolism
3.
Cell Biol Int ; 47(9): 1650-1664, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37366248

ABSTRACT

Reliable prognostic signatures that can reflect the intrinsic characteristics of gastric cancer (GC) are still rare. Here, we developed an adenosine-based prognostic signature and explored its association with the tumour immune in GC patients, aiming at confirming the prognostic value of adenosine-related genes and guiding the GC risk stratification and immunotherapeutic response prediction. We collected adenosine pathway-related genes from STRING websites and manual searching. We enrolled the The Cancer Genome Atlas cohort and four gene expression omnibus cohorts of GC for generating and validating the adenosine pathway-based signature using the Cox regression method. Gene expression in the signature was verified using polymerase chain reaction. We also performed gene set enrichment analysis, immune infiltration assessment and immunotherapy response prediction based on this signature. Our study resulted in a six-gene adenosine signature (GNAS, CXCR4, PPP1R1B, ADCY6, NT5E and NOS3) for risk stratification of GC prognosis, with the highest area under the receiver operating characteristic curve up to 0.767 for predicting 10-year overall survival (OS). In the training cohort, patients with signature-defined high risk had significantly poorer OS than those with low risk (p < .001). Multivariate analysis identified the signature as an independent prognostic factor (hazard ratio 2.863, 95% confidence interval [1.871-4.381], p < .001). These findings were confirmed in four independent cohorts. Expression detection showed that all signature genes were upregulated in both GC tissues and cell lines. Further analysis revealed that the signature-defined high-risk patients were characterised by immunosuppressive states and associated with a poor immunotherapy response. In conclusion, the adenosine pathway-based signature represents a promising risk stratification tool for GC in guiding individualised prognostication and immunotherapy.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Prognosis , Adenosine , Cell Line , Immunotherapy
4.
Gastric Cancer ; 26(5): 798-813, 2023 09.
Article in English | MEDLINE | ID: mdl-37335366

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) plays an immunoregulatory role in tumours. Here, we conducted a retrospective patient analysis to evaluate the effectiveness of PDT plus immune checkpoint inhibitors (ICIs) in gastric cancer. Further, we performed a dynamic analysis of gastric cancer patients receiving PDT to clarify its effects on anti-tumour immunity. METHODS: Forty ICI-treated patients that received PDT or not were retrospectively analysed. Five patients with gastric adenocarcinoma were enrolled for sample collection before and after PDT. Single-cell RNA/T cell receptor (TCR) sequencing, flow cytometry and histological exanimation were used to analyse the collected specimens. RESULTS: Patients in PDT group had a significantly better OS after ICI treatment than those in No PDT group. Single-cell analysis identified ten cell types in gastric cancer tissues and four sub-populations of T cells. Immune cell infiltration increased in the tumours after PDT and the circular immune cells showed consistent alterations. TCR analysis revealed a specific clonal expansion after PDT in cytotoxic T lymphocytes (CTL), but a constriction in Tregs. The B2M gene is upregulated in tumour cells after PDT and is associated with immune cell infiltration. Several pathways involving the positive regulation of immunity were enriched in tumour cells in the post-PDT group. The interactions following PDT were increased between tumour cells and effector cells but decreased between Tregs and other immune cells. Some co-stimulatory signaling emerged, whereas co-inhibitory signaling disappeared in intercellular communication after PDT. CONCLUSIONS: PDT elicits an anti-tumour response through various mechanisms and is promising as an adjuvant to enhance ICI benefit.


Subject(s)
Photochemotherapy , Stomach Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Retrospective Studies , Stomach Neoplasms/drug therapy , Receptors, Antigen, T-Cell
5.
Int J Mol Sci ; 24(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36614249

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy, with increased mortality and morbidity. Accumulating evidence suggested that 40S ribosomal protein S24 (RPS24) is related to malignant outcomes and progression. However, the role of RPS24 remains unclear in HCC. The mRNA and protein expression pattern of RPS24 in HCC was explored and confirmed based on the bioinformatics analysis and histological examination. The correlation between RPS24 expression and clinicopathological features, diagnostic value, prognosis, methylation status, and survival were evaluated. Then, we divided the HCC cohort into two groups based on the expression of RPS24, and performed the functional enrichment and immune cells infiltration analysis of RPS24. Furthermore, in vivo and in vitro experiments were performed to investigate the effect of RPS24 on HCC cells. RPS24 was observed to be elevated in HCC samples. RPS24 overexpression or RPS24 promoter methylation contributed to an unfavorable prognosis for HCC patients. The genes in the high RPS24 expression group were mainly enriched in DNA replication, cell cycle E2F targets, and the G2M checkpoint pathway. Moreover, the expression level of RPS24 was significantly related to immune infiltration and immunotherapy response. Our experiments also demonstrated that RPS24 knockdown suppressed the growth of HCC cells and tumor proliferation of the xenograft model. Therefore, RPS24 can be a potential adverse biomarker of HCC prognosis acting through facilitating cell proliferation and the formation of an immunosuppressive microenvironment in HCC. Targeting RPS24 may offer a promising therapeutic option for HCC management.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Ribosomal Proteins/genetics , Cell Cycle , Cell Division , Tumor Microenvironment/genetics
6.
Eur J Nutr ; 61(2): 915-924, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34657185

ABSTRACT

PURPOSE: To evaluate the effects of the association between first trimester vitamin D (VitD) concentrations and increased prepregnancy body mass index (BMI) on early fetal growth restriction (FGR). METHODS: This retrospective cohort study included 15,651 women with singleton pregnancy who delivered at the International Peace Maternity and Child Health Hospital between January 2015 and November 2016. Women were classified in two groups based on their serum 25(OH)D vitamin levels status: VitD sufficient (SUFF) group and VitD insufficient or deficient (INSUFF/DEF). The cut-off point for VitD concentration was 50.00 nmol/L. Comparisons were made between women with normal prepregnancy body weight (BMI 18.5-23.9 kg/m2) and overweight and obese (OWO) women (BMI > 24.0 kg/m2). Early FGR was defined as first-trimester gestational age-adjusted crown-rump length (CRL) in the lowest 20th centile of the population. Multivariate logistic regression was used to evaluate the association between maternal serum 25(OH)D levels and prepregnancy BMI with first trimester CRL and early FGR. RESULTS: In VitD INSUFF/DEF group, the first trimester CRL was decreased (P = 0.005), and the risk of early FGR was increased by 13% (95% CI 1.04-1.24, P = 0.004) compared to the VitD SUFF group. In OWO group, the first trimester CRL was also significantly decreased (P < 0.0001), and the risk of early FGR was significantly increased by 58% (95% CI 1.40-1.78, P < 0.001) compared with normal weight group. Furthermore, there was a significant combined effect of maternal VitD concentrations and OWO on CRL (P for interaction = 0.02) and the risk of early FGR (P for interaction = 0.07). CONCLUSION: Sufficient first trimester serum 25(OH)D concentration was a protective factor for early fetal growth, especially among OWO mothers. Chinese Clinical Trial Registry (Registration number: ChiCTR1900027447 with date of registration on November 13, 2019-retrospectively registered).


Subject(s)
Obesity, Maternal , Vitamin D , Child , Female , Fetal Development , Fetal Growth Retardation/epidemiology , Humans , Pregnancy , Retrospective Studies , Vitamins
7.
J Thromb Thrombolysis ; 54(1): 97-108, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35763169

ABSTRACT

Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.


Subject(s)
Cell-Derived Microparticles , Neoplasms , Thrombosis , Biology , Blood Coagulation , Cell-Derived Microparticles/metabolism , Factor VIIa/therapeutic use , Humans , Thromboplastin/metabolism , Thrombosis/drug therapy
8.
BMC Med Imaging ; 22(1): 84, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538520

ABSTRACT

OBJECTIVE: To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery. METHODS: A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model. RESULTS: Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits. CONCLUSION: The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.


Subject(s)
Rectal Neoplasms , Area Under Curve , Humans , ROC Curve , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Retrospective Studies , Ultrasonography
9.
J Bioenerg Biomembr ; 53(4): 393-403, 2021 08.
Article in English | MEDLINE | ID: mdl-34076840

ABSTRACT

Inflammation and renal cell apoptosis participate in sepsis-induced acute kidney injury. Previous research found the upregulation of long non-coding RNA Linc-KIAA1737-2 in hypoxia- or inflammation-challenged human proximal tubular epithelial cells, but its role in sepsis-induced acute kidney injury is underexplored. In this research, we found that Linc-KIAA1737-2 could be upregulated in HK-2 human proximal tubular epithelial cells by LPS treatment, and knock-down of this lncRNA significantly attenuated LPS-induced apoptosis in HK-2 cells, while its overexpression showed opposite effect. MiR-27a-3p was confirmed to interact with Linc-KIAA1737-2 in HK-2 cells by RNA pull-down and dual-luciferase assay. MiR-27a-3p mimic transfection significantly attenuated LPS-induced HK-2 cell apoptosis by downregulating the protein levels of TLR4 and NF-κB, which was overturned by overexpression of Linc-KIAA1737-2. Our results suggested that Linc-KIAA1737-2 could promote LPS-induced apoptosis in HK-2 cells, and presumably sepsis-induced acute kidney injury, by regulating the miR-27a-3p/TLR4/NF-κB axis.


Subject(s)
Lipopolysaccharides/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , Apoptosis , Humans , Transfection
10.
BMC Pediatr ; 21(1): 104, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33648480

ABSTRACT

BACKGROUND: Chorioamnionitis is associated with various neonatal short- and long-term morbidities. The effect of chorioamnionitis on premature children's outcomes remains controversial. The aim of this study is to investigate the relationship between histological chorioamnionitis (HCA) and physiological development, wheezing, and atopic diseases in preterm children. METHODS: Singleton, preterm children (< 34 weeks), whose mother underwent pathological placental examinations, were retrospectively enrolled and the outcomes were assessed at 24-40 months during follow-up. Wheezing and atopic diseases including eczema, food allergies, and allergic rhinitis were screened by a questionnaire along with medical diagnosis. Anthropometric indexes and blood pressure were measured. Cognitive and behavioural developments were assessed by the Gesell Development and Diagnosis Scale. Blood IgE and routine examination were analyzed with venous blood and serum metabolomic profiling was assessed via liquid chromatography-mass spectrometry (LC-MS). A multivariate logistic regression model was used to estimate the association between HCA and the current outcomes. RESULTS: Among the 115 enrolled children, 47 were exposed to HCA. The incidence of wheezing was significantly higher in children exposed to HCA, as 38.30% of children who were exposed to HCA and 16.18% of children who were not had been diagnosed with wheezing. After adjusting for related confounders in the multivariate logistic regression model, there remained a 2.72-fold increased risk of wheezing in children with HCA (adjusted odds ratio, aOR, 2.72; 95% confidence interval, 1.02-7.23). Moreover, 163 differential metabolites, such as butanoic acid, annotemoyin 1 and charine, were identified in the HCA exposed children's serum. Enrichment analysis revealed that these compounds participated in diverse key metabolomic pathways relating to physical and neuro- developments, including glycerophospholipid, alpha-linolenic acid and choline metabolisms. There were no significant differences in atopic diseases, serum IgE, eosinophils' level, anthropometric indexes, blood pressure, or cognitive or behavioural developments between the two groups. CONCLUSION: HCA exposure is associated with an increased risk of wheezing in preterm children less than 34 gestational weeks.


Subject(s)
Chorioamnionitis , Child , Chorioamnionitis/epidemiology , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Placenta , Pregnancy , Respiratory Sounds/etiology , Retrospective Studies
11.
Mol Plant Microbe Interact ; 33(4): 565-568, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31958033

ABSTRACT

Verticillium dahliae is a widely distributed soilborne pathogen that causes vascular wilt in more than 200 plant species. Defoliating and nondefoliating symptoms caused by the disease that result in either the loss or retention of leaves in infected plants, respectively, in hosts such as cotton, olive, and okra, divide the causal agent into defoliating and nondefoliating pathotypes. Our goal in this current work was to generate genome resources for the defoliating strain XJ592 and the nondefoliating strain XJ511 of V. dahliae isolated from cotton in China.


Subject(s)
Genome, Fungal , Plants , Verticillium , China , Genome, Fungal/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology , Plants/microbiology , Verticillium/genetics
12.
J Med Virol ; 92(7): 883-890, 2020 07.
Article in English | MEDLINE | ID: mdl-32301508

ABSTRACT

Several systematic reviews (SRs) have been conducted on the COVID-19 outbreak, which together with the SRs on previous coronavirus outbreaks, form important sources of evidence for clinical decision and policy making. Here, we investigated the methodological quality of SRs on COVID-19, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Online searches were performed to obtain SRs on COVID-19, SARS, and MERS. The methodological quality of the included SRs was assessed using the AMSTAR-2 tool. Descriptive statistics were used to present the data. In total, of 49 SRs that were finally included in our study, 17, 16, and 16 SRs were specifically on COVID-19, MERS, and SARS, respectively. The growth rate of SRs on COVID-19 was the highest (4.54/month) presently. Of the included SRs, 6, 12, and 31 SRs were of moderate, low, and critically low quality, respectively. SRs on SARS showed the optimum quality among the SRs on the three diseases. Subgroup analyses showed that the SR topic (P < .001), the involvement of a methodologist (P < .001), and funding support (P = .046) were significantly associated with the methodological quality of the SR. According to the adherence scores, adherence to AMSTAR-2 items sequentially decreased in SRs on SARS, MERS, and COVID-19. The methodological quality of most SRs on coronavirus outbreaks is unsatisfactory, and those on COVID-19 have higher risks of poor quality, despite the rapid actions taken to conduct SRs. The quality of SRs should be improved in the future. Readers must exercise caution in accepting and using the results of these SRs.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/epidemiology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Bibliometrics , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Public Reporting of Healthcare Data , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/transmission , Statistics as Topic , Systematic Reviews as Topic
13.
Plant Dis ; 103(6): 1357-1362, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31009364

ABSTRACT

Verticillium wilt caused by Verticillium spp., also called potato early dying disease, is one of the most serious soilborne diseases affecting potato production in China. The disease has been expanding into most potato production areas over the past few years. Information on host resistance against Verticillium wilt among the potato cultivars in China is scarce, but it is critical for sustainable management of the disease. This study, therefore, evaluated 30 commercially popular potato cultivars against Verticillium dahliae strain Vdp83 and Verticillium nonalfalfae strain Vnp24, two well-characterized strains causing Verticillium wilt of potato in China. Both strains were isolated from diseased potato plants, and they were previously proven to be highly virulent. Ten plants of each cultivar were inoculated with the V. dahliae strain and incubated on greenhouse benches. Symptoms were rated at weekly intervals, and the relative area under the disease progress curve was calculated. The experiment was repeated once, and nonparametric analysis was used to calculate the relative marginal effects and the corresponding confidence intervals. Five resistant cultivars and four susceptible cultivars identified from the analyses were then challenged with the V. nonalfalfae strain. Cultivar responses to V. nonalfalfae were like those exhibited against V. dahliae, except for one cultivar. This study showed that resistance among potato cultivars exists in China against Verticillium spp. and that the resistance to V. dahliae identified in potato is also effective against the other Verticillium species that cause Verticillium wilt with a few exceptions. Cultivars identified as resistant to Verticillium wilt can be deployed to manage the disease until the breeding programs develop new cultivars with resistance from the sources identified in this study.


Subject(s)
Disease Resistance , Solanum tuberosum , Verticillium , China , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Species Specificity , Verticillium/physiology
14.
Int J Exp Pathol ; 99(5): 210-217, 2018 10.
Article in English | MEDLINE | ID: mdl-30443948

ABSTRACT

The present study investigated the therapeutic potential of omega-6 fatty acids, according to their effects on antioxidant markers and matrix metalloproteinases (MMPs), in coronary heart disease-induced rats. Rats were grouped into group I (sham control), group II (control), group III (0.5 g/kg bwt of omega-6 fatty acids) and group IV (1 g/kg bwt of omega-6 fatty acids). Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), catalase, glutathione peroxidase (Gpx) and acetylcholinesterase (AChE) enzyme activities were determined. ROS and MDA were substantially reduced, whereas SOD, catalase, Gpx and AChE were significantly increased, following supplementation with omega-6 fatty acids. MMP-2 mRNA expression was drastically increased by 95% in group II. Treatment significantly reduced MMP-2 mRNA expression by 12.3% and 26.7% in groups III and IV respectively. MMP-9 mRNA expression drastically increased, by 121%, in group II. Treatment significantly reduced MMP-9 mRNA expression by 22.6% and 29.4% in groups III and IV respectively. MMP-2 protein expression was drastically increased, by 81%, in group II. Treatment significantly reduced MMP-2 protein expression by 9.4% and 26% in groups III and IV respectively. MMP-9 protein expression was drastically increased, by 100%, in group II. Treatment significantly reduced MMP-9 protein expression by 18.9% and 26.9% in groups III and IV respectively. In summary, the consumption of omega-6 fatty acids significantly decreased MDA and ROS, while SOD, catalase, GHS, Gpx and AChE were increased. Furthermore, omega-6 fatty acids significantly downregulated MMP-2 and MMP-9 expression in our coronary heart disease-induced rat model.


Subject(s)
Coronary Disease/drug therapy , Fatty Acids, Omega-6/pharmacology , Gene Expression Regulation/drug effects , Animals , Antioxidants/metabolism , Catalase/metabolism , Coronary Disease/chemically induced , Disease Models, Animal , Down-Regulation/drug effects , Glutathione Peroxidase/metabolism , Male , Malondialdehyde/metabolism , Matrix Metalloproteinases/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
15.
Cancer Cell Int ; 18: 74, 2018.
Article in English | MEDLINE | ID: mdl-29780284

ABSTRACT

BACKGROUND: Dysregulated expression of long non-coding RNAs (lncRNAs) has been reported in the pathogenesis and progression of multiple cancers, including hepatocellular carcinoma (HCC). LncRNA CTD-2547G23.4 is a novel lncRNA, and its role in HCC is still unknown. Here, we aimed to clarify the expression pattern and clinical value of CTD-2547G23.4 and to investigate the prospective regulatory mechanism via bioinformatics analysis in HCC. METHODS: To identify differentially expressed lncRNAs in HCC, we downloaded RNA-Seq data for HCC and adjacent non-tumour tissues via The Cancer Genome Atlas (TCGA). CTD-2547G23.4 was selected by using the R language and receiver operating characteristic curve analysis. Furthermore, we validated the differential expression of CTD-2547G23.4 via Gene Expression Omnibus (GEO), ArrayExpress, Oncomine databases and quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between the CTD-2547G23.4 level and clinic pathological parameters was also assessed. To further probe the role of CTD-2547G23.4 in HCC cell cycle, lentivirus-mediated small interfering RNA was applied to silence CTD-2547G23.4 expression in Huh-7 cell line. In addition, the related genes of CTD-2547G23.4 gathered from The Atlas of Noncoding RNAs in Cancer (TANRIC) database and Multi Experiment Matrix (MEM) were assessed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes, Protein Analysis Through Evolutionary Relationships and protein-protein interaction (PPI) networks. RESULTS: CTD-2547G23.4 expression was remarkably higher in 370 HCC tissue samples than that in adjacent non-tumour liver tissues (48.762 ± 27.270 vs. 14.511 ± 8.341, P < 0.001) from TCGA dataset. The relative expression level of CTD-2547G23.4 in HCC was consistently higher than that in adjacent non-cancerous tissues (2.464 ± 0.833 vs. 1.813 ± 0.784, P = 0.001) as assessed by real time RT-qPCR. The area under the curve of the summary receiver operating characteristic curve was 0.8720 based on TCGA, qRT-PCR and GEO data. Further analysis indicated that the increased expression levels of CTD-2547G23.4 were associated with the neoplasm histologic grade and vascular tumour cell type. The expression of CTD-2547G23.4 was significantly downregulated in CTD-2547G23.4 knockdown cells. Moreover, cell cycle analysis revealed that CTD-2547G23.4 depletion in Huh-7 cell line led to S phase arrest. Furthermore, 314 related genes identified by TANRIC and MEM databases were processed with a pathway analysis. The bioinformatics analysis indicated that CTD-2547G23.4 might play a key role in the progress of HCC through four hub genes, SRC, CREBBP, ADCY8 and PPARA. CONCLUSIONS: Collectively, we put forward the hypothesis that the novel lncRNA CTD-2547G23.4 may act as an exceptional clinical index and promote the HCC tumourigenesis and progression via various related genes.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(2): 174-9, 2016 Mar.
Article in Zh | MEDLINE | ID: mdl-27263289

ABSTRACT

OBJECTIVE: To investigate the expression of type 3 acid-sensing ion channels (ASIC3) in bladder tissue of over active bladder (OAB) rat model. METHODS: Sixty adult female rats were randomly divided into control group (intraperitoneal injection of 0.9% sodium chloride), GAB group (intraperitoneal injection of cyclophosphamide) and the intervention group (OAB rats treated with ASIC3 inhibitor amiloride). The rats underwent urodynamic testing. The bladder tissues were collected for pathological examination, while the expressions of ASIC3 were measured by the methods of immunohistochemistry, RT-PCR and Western blot. RESULTS: Urodynamic study found that the rats in control group had no significant contraction instability in both storage and voiding stages. Compared with the control group, OAB group and intervention group showed instability of visible contraction in urine storage stage, with shorter micturition interval (P < 0.01) and increased frequency of urination (P < 0.01). Compared with the OAB group, the intervention group showed significantly prolonged micturition interval (P < 0.05) and reduced frequency of urination (P < 0.05). Pathologic examination showed rat bladder mucosal damage in both OAB group and intervention group. Immunohistochemistry found the expression of ASIC3 on bladder mucosa. RT-PCR and Western blot showed significantly higher expression of ASIC3 in OAB group (P < 0.01), but the expression of ASIC3 decreased in intervention group after adding ASIC3 inhibitor. CONCLUSION ASIC3 expresses mainly on bladder mucosa. The gene and protein expression of ASIC3 in rat bladder tissue of OAB rats is higher, which can be significantly decreased by ASIC inhibitor. The symptoms of OAB reduce after intervention, which demonstrates the increased expression of ASIC3 in bladder tissue is closely related to bladder detrusor.


Subject(s)
Acid Sensing Ion Channels/metabolism , Urinary Bladder, Overactive , Urinary Bladder/metabolism , Amiloride/pharmacology , Animals , Blotting, Western , Cyclophosphamide/pharmacology , Disease Models, Animal , Female , Immunohistochemistry , Injections, Intraperitoneal , Mucous Membrane/metabolism , Rats , Urination , Urodynamics
17.
Tohoku J Exp Med ; 237(1): 57-67, 2015 09.
Article in English | MEDLINE | ID: mdl-26353909

ABSTRACT

Vascular dementia (VD) has been one of the most serious public health problems worldwide. It is well known that cerebral hypoperfusion is the key pathophysiological basis of VD, but it remains unclear how global genes in hippocampus respond to cerebral ischemia-reperfusion. In this study, we aimed to reveal the global gene expression profile in the hippocampus of VD using a rat model. VD was induced by repeated occlusion of common carotid arteries followed by reperfusion. The rats with VD were characterized by deficit of memory and cognitive function and by the histopathological changes in the hippocampus, such as a reduction in the number and the size of neurons accompanied by an increase in intercellular space. Microarray analysis of global genes displayed up-regulation of 7 probesets with genes with fold change more than 1.5 (P < 0.05) and down-regulation of 13 probesets with genes with fold change less than 0.667 (P < 0.05) in the hippocampus. Gene Ontology (GO) and pathway analysis showed that the up-regulated genes are mainly involved in oxygen binding and transport, autoimmune response and inflammation, and that the down-regulated genes are related to glucose metabolism, autoimmune response and inflammation, and other biological process, related to memory and cognitive function. Thus, the abnormally expressed genes are closely related to oxygen transport, glucose metabolism, and autoimmune response. The current findings display global gene expression profile of the hippocampus in a rat model of VD, providing new insights into the molecular pathogenesis of VD.


Subject(s)
Dementia, Vascular/genetics , Gene Expression/genetics , Hippocampus/metabolism , Animals , Autoimmune Diseases/immunology , Carotid Stenosis/complications , Carotid Stenosis/genetics , Carotid Stenosis/physiopathology , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Encephalitis/etiology , Encephalitis/pathology , Glucose/metabolism , Male , Maze Learning , Memory Disorders/etiology , Memory Disorders/genetics , Memory Disorders/psychology , Microarray Analysis , Oxygen Consumption , Rats , Rats, Sprague-Dawley , Reperfusion Injury/complications , Reperfusion Injury/genetics , Reperfusion Injury/physiopathology , Up-Regulation
18.
J Colloid Interface Sci ; 672: 126-132, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833732

ABSTRACT

Despite the excellent photocatalytic activity under visible light, graphitic carbon nitride (g-C3N4) exhibits a high overpotential for hydrogen evolution. To address this issue, cocatalysts have been utilized to modify g-C3N4. However, the use of high-performance cocatalysts typically involves noble metals such as platinum and palladium, which are cost-prohibitive for practical applications. Therefore, the development of efficient and cost-effective cocatalysts is crucial for advancing photocatalysis. In this study, we synthesized a new Ni-based cocatalyst, nickel thiocarbonate (NiCS3), to enhance the photocatalytic hydrogen evolution reaction (HER) on g-C3N4. The NiCS3/g-C3N4 composite demonstrated a significantly increased hydrogen evolution rate of 951 µmol·h-1·g-1 under visible light, representing more than a 105-fold improvement compared to pure g-C3N4. Theoretical calculations suggested that the enhanced performance in photocatalytic hydrogen production can be attributed to the generation of a built-in electric field within the composite, facilitating efficient charge carrier separation and migration. Additionally, the C site in NiCS3 provides a favorable Gibbs free energy of adsorbed H* (ΔGH∗). This work underscores the potential of NiCS3 as a viable alternative to precious metals in photocatalytic hydrogen production using g-C3N4.

19.
J Colloid Interface Sci ; 659: 878-885, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219306

ABSTRACT

Cocatalysts play a key role in improving photocatalytic performance by enhancing conductivity and providing an enormous number of active sites simultaneously. However, cocatalysts are usually made of noble metals such as Pt, which are expensive and rare. Therefore, cocatalysts derived from cheap and abundant elements are highly desirable. Here, for the first time, we demonstrate that NiCS3, which is made from nickel that is abundant and costs less than 0.04 % of Pt, is an effective substitute for Pt cocatalysts for the photocatalytic activity of CdS nanorods in hydrogen evolution reaction (HER). Under visible light, the NiCS3/CdS composite with NiCS3 as the cocatalyst achieved an astonishing H2 production of 61.9 mmol·g-1·h-1 while maintaining high stability, which is 14 times higher than that observed when using CdS alone and nearly 2 times higher than that of Pt/CdS. We also established that the metallicity of NiCS3 results in good carrier conductivity, which promotes the electron transfer and the separation of photo-induced carriers. Due to the appropriate adsorption energy ΔGH*, NiCS3 more readily adsorbs hydrogen protons and desorbs molecular hydrogen during the photocatalytic process compared with Pt. Additionally, NiCS3 can effectively inhibit the photo-corrosion effect of CdS itself, ensuring a good stability of HER. These results suggest that NiCS3 is a promising substitute for Pt cocatalysts.

20.
Transl Oncol ; 45: 101962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677015

ABSTRACT

Bladder cancer (BC) has a high incidence and is prone to recurrence. In most instances, the low 5-year survival rate of advanced BC patients results from postoperative recurrence and drug resistance. Long noncoding RNAs (lncRNAs) can participate in numerous biological functions by regulating the expression of genes to affect tumorigenesis. Our previous work had demonstrated that a novel lncRNA, LINC02321, was associated with BC prognosis. In this study, A high expression of LINC02321 was found in BC tissues, which was associated with poor prognosis in patients. LINC02321 promoted both proliferation and G1-G0 progression in BC cells, while also inhibited sensitivity to cisplatin. Mechanistically, LINC02321 can bind to RUVBL2 and regulate the expression levels of RUVBL2 protein by affecting its half-life. RUVBL2 is involved in the DNA damage response. The potential of DNA damage repair pathways to exert chemosensitization has been demonstrated in vivo. The rescue experiment demonstrated that RUVBL2 overexpression can markedly abolish the decreased cell proliferation and the increased sensitivity of BC cells to cisplatin caused by LINC02321 knockdown. The results indicate that LINC02321 functions as an oncogene in BC, and may serve as a novel potential target for controlling BC progression and addressing cisplatin resistance in BC therapy.

SELECTION OF CITATIONS
SEARCH DETAIL