Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 25(1): 460, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730330

ABSTRACT

BACKGROUND: Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. RESULTS: In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. CONCLUSION: This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.


Subject(s)
Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Zingiber officinale , Zingiber officinale/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
J Nat Prod ; 87(2): 381-387, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38289330

ABSTRACT

Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.


Subject(s)
Urochordata , Animals , Magnetic Resonance Spectroscopy/methods , Aspergillus/chemistry , Fungi , Molecular Structure
3.
J Nat Prod ; 87(5): 1347-1357, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38701173

ABSTRACT

A chemical investigation of a cold-seep-sediment-derived fungus, Pseudallescheria boydii CS-793, resulted in characterization of 10 novel bergamotene-derived sesquiterpenoids, pseuboyenes A-J (1-10). Their structures were elucidated by spectroscopic and X-ray crystallographic analyses as well as using the modified Mosher's method. Compound 1 represents the first example of a ß-bergamotene containing a 6-oxobicyclo[3.2.1]octane nucleus adducted with a methyl lactate unit, while 8-10 involve a skeletal rearrangement from bergamotene. Compounds 2-5 showed significant antifungal activities against Colletotrichum gloeosporioides Penz. and Fusarium oxysporum with MICs ranging from 0.5 to 8 µg/mL. Compound 4 exhibited an in vitro anti-F. proliferatum effect with an EC50 value of 1.0 µg/mL.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Pseudallescheria , Sesquiterpenes , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Colletotrichum/drug effects , Fusarium/drug effects , Crystallography, X-Ray
4.
Bioorg Chem ; 147: 107417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701596

ABSTRACT

Marine natural products play an important role in biopesticides. Seven new secondary metabolites with different structural classes, including two cycloheptapeptides, scortide A (1) and scortide B (2), two 19-nor-diterpenoids, talascortene H (3) and talascortene I (4), two diterpenoid acids, talascortene J (5) and talascortene K (6), and one triterpenoid, talascortene L (7) were isolated and identified from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, tandem mass spectrometry, and electronic circular dichroism (ECD) calculations. The result of the antimicrobial assay demonstrated that compounds 1 - 6 have inhibitory activity against several human, aquatic, and plant pathogens with minimum inhibitory concentration (MIC) values ranging from 1 to 64 µg/mL. Specially, compounds 2 and 4 showed significant activities against the pathogenic fungus Curvularia spicifera with the MIC value of 1 µg/mL, providing an experimental basis of 2 and 4 with the potential as lead compounds to be developed into biopesticides.


Subject(s)
Microbial Sensitivity Tests , Talaromyces , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Molecular Structure , Structure-Activity Relationship , Talaromyces/chemistry , Talaromyces/metabolism , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology
5.
Nature ; 554(7691): 234-238, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29420476

ABSTRACT

High species diversity may result from recent rapid speciation in a 'cradle' and/or the gradual accumulation and preservation of species over time in a 'museum'. China harbours nearly 10% of angiosperm species worldwide and has long been considered as both a museum, owing to the presence of many species with hypothesized ancient origins, and a cradle, as many lineages have originated as recent topographic changes and climatic shifts-such as the formation of the Qinghai-Tibetan Plateau and the development of the monsoon-provided new habitats that promoted remarkable radiation. However, no detailed phylogenetic study has addressed when and how the major components of the Chinese angiosperm flora assembled to form the present-day vegetation. Here we investigate the spatio-temporal divergence patterns of the Chinese flora using a dated phylogeny of 92% of the angiosperm genera for the region, a nearly complete species-level tree comprising 26,978 species and detailed spatial distribution data. We found that 66% of the angiosperm genera in China did not originate until early in the Miocene epoch (23 million years ago (Mya)). The flora of eastern China bears a signature of older divergence (mean divergence times of 22.04-25.39 Mya), phylogenetic overdispersion (spatial co-occurrence of distant relatives) and higher phylogenetic diversity. In western China, the flora shows more recent divergence (mean divergence times of 15.29-18.86 Mya), pronounced phylogenetic clustering (co-occurrence of close relatives) and lower phylogenetic diversity. Analyses of species-level phylogenetic diversity using simulated branch lengths yielded results similar to genus-level patterns. Our analyses indicate that eastern China represents a floristic museum, and western China an evolutionary cradle, for herbaceous genera; eastern China has served as both a museum and a cradle for woody genera. These results identify areas of high species richness and phylogenetic diversity, and provide a foundation on which to build conservation efforts in China.


Subject(s)
Biodiversity , Magnoliopsida/classification , Phylogeny , China , Conservation of Natural Resources/methods , Evolution, Molecular , Geographic Mapping , Regression Analysis , Spatio-Temporal Analysis
6.
Beilstein J Org Chem ; 20: 470-478, 2024.
Article in English | MEDLINE | ID: mdl-38440169

ABSTRACT

Pseudallenes A and B (1 and 2), the new and rare examples of sulfur-containing ovalicin derivatives, along with three known analogues 3-5, were isolated and identified from the culture extract of Pseudallescheria boydii CS-793, a fungus obtained from the deep-sea cold seep sediments. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis confirmed and established the structures and absolute configurations of compounds 1-3, thus providing the first characterized crystal structure of an ovalicin-type sesquiterpenoid. In the antimicrobial assays, compounds 1-3 showed broad-spectrum inhibitory activities against several plant pathogens with MIC values ranging from 2 to 16 µg/mL.

7.
BMC Genomics ; 24(1): 30, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653780

ABSTRACT

BACKGROUND: The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS: We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS: This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.


Subject(s)
Genome, Chloroplast , Zingiberaceae , Phylogeny , Zingiberaceae/genetics , Genomics/methods , Polymorphism, Genetic , Evolution, Molecular
8.
Pharmacogenet Genomics ; 33(5): 101-110, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37261937

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS: An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS: mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1ß levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION: These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.


Subject(s)
Autism Spectrum Disorder , Valproic Acid , Rats , Animals , Mice , Humans , Valproic Acid/adverse effects , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Protein Serine-Threonine Kinases/adverse effects , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Apoptosis , Phosphatidylinositols/adverse effects , Serine/adverse effects , Disease Models, Animal
9.
Org Biomol Chem ; 21(12): 2575-2585, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36880760

ABSTRACT

Seven new highly oxygenated natural products with diverse chemical structural types, including three new glucosidic polyketides, talaminiosides A-C (1-3), a pair of racemic aromatic polyketides, (±)-talaminone A (4a and 4b), two new azaphilone polyketides, (+)-5-chloromitorubrinic acid (5) and 7-epi-purpurquinone C (7), and one new drimane sesquiterpene lactone, 11-hydroxyminioluteumide B (8), together with a pinazaphilone B sodium salt (6) and 10 known compounds (9-18), were isolated and identified from the culture extract of Talaromyces minioluteus CS-113, a fungus obtained from deep-sea cold-seep sediments collected from the South China Sea. LCMS results indicated that compounds 3 and 4 might be produced by the real activation of silent BGCs triggered by the histone deacetylase inhibitor SAHA, and some of the other compounds were enhanced minor components. Their structures were elucidated by the detailed interpretation of NMR spectroscopic and mass spectrometric data, X-ray crystallographic analysis, ECD and specific rotation (SR) calculations, and DP4+ probability analysis. Compound 7, an azaphilone derivative, exhibited potent activities against several agricultural pathogenic fungi with MIC values equivalent or comparable to amphotericin B. The structure-activity relationship of the isolated azaphilones is briefly discussed. This is the first report of the chemical diversity study of deep-sea cold-seep-derived fungi triggered by SAHA, providing a useful strategy for the activation of cryptic fungal metabolites from deep-sea-derived fungi.


Subject(s)
Anti-Infective Agents , Polyketides , Talaromyces , Polyketides/chemistry , Histone Deacetylase Inhibitors , Magnetic Resonance Spectroscopy , Molecular Structure
10.
Chem Biodivers ; 20(4): e202300229, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36866699

ABSTRACT

Rubenpolyketone A (1), a polyketide featuring a new carbon skeleton having cyclohexenone condensed with a methyl octenone chain and a new linear sesquiterpenoid, chermesiterpenoid D (2), together with seven known secondary metabolites (3-9) were isolated and identified from the Magellan Seamount-derived fungus Penicillium rubens AS-130. Their structures were determined based on detailed analysis of NMR and mass spectroscopic data and the absolute configurations of these two new compounds were elucidated by the combination of quantum mechanical (QM)-NMR and time-dependent density functional (TDDFT) ECD calculation approaches. Chermesiterpenoids B (3) and C (4) showed potent inhibitory activities against the aquatic pathogen Vibrio anguillarum with MIC values of 0.5 and 1 µg/mL, respectively, while chermesin F (6) exhibited activity against Escherichia coli with MIC value of 1 µg/mL.


Subject(s)
Penicillium , Polyketides , Sesquiterpenes , Molecular Structure , Polyketides/chemistry , Sesquiterpenes/chemistry , Penicillium/chemistry
11.
Physiol Genomics ; 54(9): 325-336, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35723222

ABSTRACT

Troxerutin is known for its anti-inflammatory and antioxidative effects in nerve impairment. The purpose of this study is to investigate the effect of troxerutin and cerebroprotein hydrolysate injections (TCHis) on prenatal valproic acid (VPA)-exposed rats. The VPA was administered to pregnant rats on gestational day 12.5 to induce a model of autism. The offspring were given the treatment of TCHis on postnatal day (PND) 21-50. On PND 43-50, the behavioral analysis of offspring was performed after the treatment of TCHis for 1 h. On PND 50, the offspring were harvested and the brains were collected. The hippocampus and prefrontal cortex were isolated for relevant biochemical detections. The administration of TCHis increased pain sensitivity and improved abnormal social behaviors in prenatal VPA-exposed rats. Prenatal exposure of VPA induced neuronal loss and apoptosis, enhanced reactive oxygen species (ROS) production, and promoted oxidative stress in hippocampus and prefrontal cortex, whereas these effects were reversed by the postnatal treatment of TCHis. In addition, postnatal administration of TCHis ameliorated mitochondrial function in hippocampus and prefrontal cortex of prenatal VPA-exposed rats. This study concluded that postnatal treatment of TCHis reduced oxidative stress and ameliorated abnormal behavior in a prenatal VPA-induced rat model of autism.


Subject(s)
Autistic Disorder , Prenatal Exposure Delayed Effects , Animals , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Behavior, Animal , Disease Models, Animal , Female , Humans , Hydroxyethylrutoside/analogs & derivatives , Oxidative Stress , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar , Social Behavior , Valproic Acid/pharmacology
12.
BMC Genomics ; 23(1): 49, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35021996

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are endogenous, non-coding small functional RNAs that govern the post-transcriptional regulatory system of gene expression and control the growth and development of plants. Ginger is an herb that is well-known for its flavor and medicinal properties. The genes involved in ginger rhizome development and secondary metabolism have been discovered, but the genome-wide identification of miRNAs and their overall expression profiles and targets during ginger rhizome development are largely unknown. In this study, we used BGISEQ-500 technology to perform genome-wide identification of miRNAs from the leaf, stem, root, flower, and rhizome of ginger during three development stages. RESULTS: In total, 104 novel miRNAs and 160 conserved miRNAs in 28 miRNA families were identified. A total of 181 putative target genes for novel miRNAs and 2772 putative target genes for conserved miRNAs were predicted. Transcriptional factors were the most abundant target genes of miRNAs, and 17, 9, 8, 4, 13, 8, 3 conserved miRNAs and 5, 7, 4, 5, 5, 15, 9 novel miRNAs showed significant tissue-specific expression patterns in leaf, stem, root, flower, and rhizome. Additionally, 53 miRNAs were regarded as rhizome development-associated miRNAs, which mostly participate in metabolism, signal transduction, transport, and catabolism, suggesting that these miRNAs and their target genes play important roles in the rhizome development of ginger. Twelve candidate miRNA target genes were selected, and then, their credibility was confirmed using qRT-PCR. As the result of qRT-PCR analysis, the expression of 12 candidate target genes showed an opposite pattern after comparison with their miRNAs. The rhizome development system of ginger was observed to be governed by miR156, miR319, miR171a_2, miR164, and miR529, which modulated the expression of the SPL, MYB, GRF, SCL, and NAC genes, respectively. CONCLUSION: This is a deep genome-wide investigation of miRNA and identification of miRNAs involved in rhizome development in ginger. We identified 52 rhizome-related miRNAs and 392 target genes, and this provides an important basis for understanding the molecular mechanisms of the miRNA target genes that mediate rhizome development in ginger.


Subject(s)
MicroRNAs , Zingiber officinale , Gene Expression Regulation, Plant , Zingiber officinale/genetics , Humans , MicroRNAs/genetics , Plant Leaves , Rhizome
13.
BMC Gastroenterol ; 22(1): 25, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35045833

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the deadliest tumours due to its ability to metastasize. The Epithelial-to-mesenchymal transition plays a crucial role in promoting the GC metastasis, which increases the migration and metastasis of tumour cells. Peptidyl arginine deiminase IV (PADI4) is a susceptibility gene for gastric carcinoma. The aim of this study was to evaluate the functional roles of PADI4 in gastric cancer. METHODS: The expression of PADI4 was examined by qRT-PCR, western blot and immunohistochemistry. In addition, the functional roles of PADI4 were explored by over-expression PADI4 plasmids in gastric cancer cells. RESULTS: We found that the expression of PADI4 was up-regulated in GC. PADI4 overexpression in GC cells increased the proliferation, migration, metastasis, clone forming ability, and tumorigenic ability, but reduced the apoptosis ability. The Multi-Analyte ELISArray Kit results showed that interleukin 8 (IL-8) is upregulated in PADI4-overexpressing gastric cells. Using short interfering RNA (siRNA) to silence the expression of IL-8, we demonstrated that IL-8 silencing significantly inhibited the increased migratory capacity in PADI4-overexpressing GC cells. CONCLUSIONS: Our data suggest that PADI4 accelerate metastasis by promoting IL-8 expression in gastric cancer cells, indicating that it is a new PADI4/IL-8 signalling pathway in metastatic GC.


Subject(s)
Epithelial-Mesenchymal Transition , Interleukin-8 , Protein-Arginine Deiminase Type 4 , Stomach Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Interleukin-8/genetics , Neoplasm Invasiveness , Stomach Neoplasms/genetics , Up-Regulation
14.
Bioorg Chem ; 128: 106104, 2022 11.
Article in English | MEDLINE | ID: mdl-36058117

ABSTRACT

Cyclopiumolides A (1) and B (2), first representatives of two novel biosynthetic related 13-membered macrolides featuring an uncommon verrucosidinol unit condensed with a spiculisporic acidic moiety, were identified from the fungus Penicillium cyclopium SD-413, which was obtained from the deep-sea sediments collected in the East China Sea. The structures of cyclopiumolides A (1) and B (2) were identified on the basis of extensive NMR spectroscopic and mass spectrometric data analysis. Their relative and absolute configurations were determined by quantum mechanical calculations of ECD spectra comparing with that of experimental curves and by DP4 + NMR data calculations. Compounds 1 and 2 exhibited significant cytotoxic potencies against the tumor cell lines SF126, FaDu, and TE-1 with IC50 values ranging from 5.86 to 17.05 µM. The inhibition modes and binding sites of 1 and 2 were inspected using molecular docking simulations.


Subject(s)
Macrolides , Penicillium , Anti-Bacterial Agents , Fungi , Macrolides/pharmacology , Molecular Docking Simulation , Molecular Structure , Penicillium/chemistry
15.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323476

ABSTRACT

An unusual sesquiterpene glycoside trichoacorside A (1) and two novel sorbicillinoid glycosides sorbicillisides A (2) and B (3), together with a known compound sorbicillin (4), were isolated and identified from the culture extract of an endophytic fungus Trichoderma longibrachiatum EN-586, obtained from the marine red alga Laurencia obtusa. Trichoacorside A (1) is the first representative of a glucosamine-coupled acorane-type sesquiterpenoid. Their structures were elucidated based on detailed interpretation of NMR and mass spectroscopic data. The absolute configurations were determined by X-ray crystallographic analysis, chemical derivatization, and DP4+ probability analysis. The antimicrobial activities of compounds 1-4 against several human, aquatic, and plant pathogens were evaluated.


Subject(s)
Anti-Infective Agents , Endophytes/chemistry , Glycosides , Hypocreales/chemistry , Laurencia/microbiology , Polyketides , Resorcinols , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Mitosporic Fungi/drug effects , Mitosporic Fungi/growth & development , Molecular Structure , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
16.
Chem Biodivers ; 19(10): e202200645, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36125239

ABSTRACT

(+)-Talarolactone C (1), Talarolactone A (2), Talarolactone B (3, sulfoxide derivative), and Talarolactone D (4, sulfone derivative) were isolated from Talaromyces sp. which was cultured in rice medium with sodium butyrate. The structures of talarolactone analogs above were characterized by a combination of spectroscopic, X-ray crystallographic, and computational methods. These talarolactones and Talarolactone A sodium (5) with the same carbon skeleton showed different fluorescence characteristics.


Subject(s)
Talaromyces , Talaromyces/chemistry , Molecular Structure , Butyric Acid , Sulfones , Sulfoxides , Sodium , Carbon
17.
BMC Plant Biol ; 21(1): 561, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823471

ABSTRACT

BACKGROUND: AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. RESULTS: A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. CONCLUSION: A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.


Subject(s)
Adaptation, Physiological/genetics , Multigene Family , Stress, Physiological/genetics , Transcription Factor AP-2/genetics , Zingiber officinale/growth & development , Zingiber officinale/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Phylogeny
18.
Bioorg Chem ; 110: 104822, 2021 05.
Article in English | MEDLINE | ID: mdl-33770672

ABSTRACT

Thirteen alkaloids, which include three new diketopiperazines, namely, 3-hydroxyprotuboxepin K (4), 3,15-dehydroprotuboxepin K (5), and versiamide A (6), together with ten known alkaloid derivatives (1-3 and 7-13), were isolated from the marine red algal-derived fungus Aspergillus creber EN-602. Versiamide A (6) represents the first example of a naturally occurring quinazolinone alkaloid with a diketopiperazine ring that is derived from phenylalanine (Phe) and leucine (Leu). The structures of these compounds were elucidated by detailed interpretation of their 1D/2D NMR spectroscopic and mass spectrometric data, while the absolute configurations of compounds 1-6 were established on the basis of X-ray crystallographic analysis and time-dependent density functional (TDDFT) calculations of the ECD spectra. Compounds 1, 2, and 4 exhibited inhibitory activity against the angiotensin converting enzyme (ACE) with IC50 values of 11.2, 16.0, and 22.4 µM, respectively, and compounds 5 and 6 inhibited various aquatic bacteria with MIC values that ranged from 8 to 64 µg/mL. The intermolecular interactions and potential binding sites between compounds 1-6 and ACE were investigated via molecular docking simulations.


Subject(s)
Alkaloids/pharmacology , Aspergillus/chemistry , Enzyme Inhibitors/pharmacology , Peptidyl-Dipeptidase A/metabolism , Rhodophyta/microbiology , Alkaloids/biosynthesis , Alkaloids/chemistry , Aspergillus/metabolism , Crystallography, X-Ray , Density Functional Theory , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
19.
Am J Perinatol ; 38(2): 122-125, 2021 01.
Article in English | MEDLINE | ID: mdl-31412404

ABSTRACT

OBJECTIVE: This study aimed to evaluate the application of ultrasound for the localization of the tip position of peripherally inserted central catheters (PICCs) in newborn infants. STUDY DESIGN: This study was a retrospective analysis on ultrasonic localization for PICC placement conducted in our department over the past 2 years. Ultrasonic localization was performed immediately after PICC placement in all neonatal patients. Successful PICC placement was confirmed if the PICC tip position was located at the inferior/superior cavoatrial junction. Chest X-ray localization was performed on 32 infants immediately after ultrasound examination to compare the accuracy of ultrasound localization. RESULTS: Of the 186 patients, 174 (93.5%) had successful PICC placement on the first attempt. In 11 (5.9%) patients, the catheter tip was placed beyond the ideal location as follows: too deep (in the right atrium) in 4 patients, too shallow in 4 patients, and malpositioned in 3 patients. Both the sensitivity and the specificity of ultrasound for identifying PICC tip localization were 100%. Complications occurred in 2.7% of this group of patients. CONCLUSION: Ultrasonic localization of the PICC tip position is a timely, accurate, and reliable method and can identify the catheter tip with high accuracy. This method could be widely applied in neonatal wards.


Subject(s)
Catheterization, Peripheral/methods , Ultrasonography , Catheterization, Peripheral/adverse effects , Female , Heart Atria/injuries , Humans , Infant, Newborn , Male , Retrospective Studies , Sensitivity and Specificity
20.
Bioorg Chem ; 94: 103448, 2020 01.
Article in English | MEDLINE | ID: mdl-31785858

ABSTRACT

Eight new highly oxygenated fungal polyketides, namely, 15-hydroxy-1,4,5,6-tetra-epi-koninginin G (1), 14-hydroxykoninginin E (2), koninginin U (3), 4'-hydroxykoninginin U (4), koninginin V (5), 14-ketokoninginin B (6), 14-hydroxykoninginin B (7), and 7-O-methylkoninginin B (8), together with six known related analogues (9-14), were isolated from Trichoderma koningiopsis QA-3, a fungus obtained from the inner root tissue of the well known medicinal plant Artemisia argyi. All these compounds are bicyclic polyketides, with compound 1 contains unusual hemiketal moiety at C-5 and compounds 2-14 having ketone group at C-1 and double bond at C-5(6). The structures and absolute configurations of the new compounds were established by spectroscopic analysis, X-ray crystal diffraction, modified Mosher's method, and ECD calculation. The absolute configurations of the known compounds 9, 10, and 12 were determined by X-ray crystal diffractions for the first time. The antimicrobial activities against human pathogen, marine-derived aquatic bacteria, and plant-pathogenic fungi of compounds 1-14 were evaluated, and compound 1 showed remarkable activity against aquatic pathogen Vibrio alginolyticus with MIC value 1 µg/mL, which is as active as that of the positive control.


Subject(s)
Anti-Bacterial Agents/pharmacology , Artemisia/chemistry , Plants, Medicinal/chemistry , Polyketides/pharmacology , Trichoderma/metabolism , Vibrio alginolyticus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Oxygen/metabolism , Plant Roots/chemistry , Polyketides/chemistry , Polyketides/metabolism , Structure-Activity Relationship , Trichoderma/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL