Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
Add more filters

Publication year range
1.
Nature ; 612(7941): 725-731, 2022 12.
Article in English | MEDLINE | ID: mdl-36517592

ABSTRACT

Ribosomes are highly sophisticated translation machines that have been demonstrated to be heterogeneous in the regulation of protein synthesis1,2. Male germ cell development involves complex translational regulation during sperm formation3. However, it remains unclear whether translation during sperm formation is performed by a specific ribosome. Here we report a ribosome with a specialized nascent polypeptide exit tunnel, RibosomeST, that is assembled with the male germ-cell-specific protein RPL39L, the paralogue of core ribosome (RibosomeCore) protein RPL39. Deletion of RibosomeST in mice causes defective sperm formation, resulting in substantially reduced fertility. Our comparison of single-particle cryo-electron microscopy structures of ribosomes from mouse kidneys and testes indicates that RibosomeST features a ribosomal polypeptide exit tunnel of distinct size and charge states compared with RibosomeCore. RibosomeST predominantly cotranslationally regulates the folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm. Moreover, we found that specialized functions of RibosomeST were not replaceable by RibosomeCore. Taken together, identification of this sperm-specific ribosome should greatly expand our understanding of ribosome function and tissue-specific regulation of protein expression pattern in mammals.


Subject(s)
Fertility , Ribosomes , Spermatozoa , Animals , Male , Mice , Cryoelectron Microscopy/methods , Peptides/chemistry , Peptides/metabolism , Protein Biosynthesis , Protein Folding , Ribosomes/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Fertility/physiology , Organ Specificity , Ribosomal Proteins , Kidney/cytology , Testis/cytology
2.
PLoS Pathog ; 20(8): e1012387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39213434

ABSTRACT

Infection of Rift Valley fever virus (RVFV), a highly pathogenic mosquito-borne zoonotic virus, triggers severe inflammatory pathogenesis but the underlying mechanism of inflammation activation is currently unclear. Here, we report that the non-structural protein NSs of RVFV triggers mitochondrial damage to activate the NLRP3 inflammasome leading to viral pathogenesis in vivo. It is found that the host transcription inhibition effect of NSs causes rapid down-regulation of myeloid cell leukemia-1(MCL-1), a pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) protein family. MCL-1 down-regulation led to BAK activation in the mitochondria, which triggered mtROS production and release of oxidized mitochondrial DNA (ox-mtDNA) into the cytosol. Cytosolic ox-mtDNA binds and activates the NLRP3 inflammasome triggering NLRP3-GSDMD pyroptosis in RVFV infected cells. A NSs mutant virus (RVFV-NSsRM) that is compromised in inducing transcription inhibition did not trigger MCL-1 down-regulation nor NLRP3-GSDMD pyroptosis. RVFV infection of the Nlrp3-/- mouse model demonstrated that the RVFV-triggered NLRP3 pyroptosis contributed to RVFV inflammatory pathogenesis and fatal infection in vivo. Infection with the RVFV-NSsRM mutant virus similarly showed alleviated inflammatory pathogenesis and reduced fatality rate. Taken together, these results revealed a mechanism by which a virulence factor activates the mitochondrial MCL-1-BAK axis through inducing host transcription inhibition to trigger NLRP3-dependent inflammatory pathogenesis.


Subject(s)
Mitochondria , Myeloid Cell Leukemia Sequence 1 Protein , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Humans , Mice , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , Inflammasomes/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/virology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Virulence Factors/metabolism , Virulence Factors/genetics , Rift Valley fever virus , Viral Nonstructural Proteins
3.
FASEB J ; 38(7): e23562, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38578557

ABSTRACT

Our recent investigation has indicated that the global deletion of MBD2 can mitigate the progression of AKI induced by VAN. Nevertheless, the role and regulatory mechanisms of proximal tubular MBD2 in this pathophysiological process have yet to be elucidated. Our preceding investigation revealed that autophagy played a crucial role in advancing AKI induced by VAN. Consequently, we postulated that MBD2 present in the proximal tubule could upregulate the autophagic process to expedite the onset of AKI. In the present study, we found for the first time that MBD2 mediated the autophagy production induced by VAN. Through the utilization of miRNA chip analysis, we have mechanistically demonstrated that MBD2 initiates the activation of miR-597-5p through promoter demethylation. This process leads to the suppression of S1PR1, which results in the induction of autophagy and apoptosis in renal tubular cells. Besides, PT-MBD2-KO reduced autophagy to attenuate VAN-induced AKI via regulation of the miR-597-5p/S1PR1 axis, which was reversed by rapamycin. Finally, the overexpression of MBD2 aggravated the diminished VAN-induced AKI in autophagy-deficient mice (PT-Atg7-KO). These data demonstrate that proximal tubular MBD2 facilitated the process of autophagy via the miR-597-5p/S1PR1 axis and subsequently instigated VAN-induced AKI through the induction of apoptosis. The potentiality of MBD2 being a target for AKI was established.


Subject(s)
Acute Kidney Injury , MicroRNAs , Animals , Mice , Vancomycin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Kidney , MicroRNAs/genetics , Apoptosis/physiology , Autophagy
4.
Cell Mol Life Sci ; 81(1): 154, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538857

ABSTRACT

Approximately 60% of septic patients developed acute kidney injury (AKI). The mortality rate of septic AKI (SA-AKI) is two to three times higher than that of septic without AKI (SA-non-AKI). The actual functions and mechanisms of CircRNAs in the pathophysiology of SA-AKI remain incompletely understood. Herein, we observed that the mmu_Circ_26986 could be induced by lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) in BUMPT cell line and C57BL/6 mouse kidney, respectively. Functionally, mmu_Circ_26986 suppressed BUMPT cell apoptosis induced by LPS. Mechanistically, mmu_Circ_26986 sponged miRNA-29b-1-5p to upregulate the expression of PAK7. Overexpression of mmu_Circ_26986 ameliorated the progression of CLP-stimulated AKI through miRNA-29b-1-5p/PAK7 axis. In addition, we found that hsa_Circ_0072463, homologous to mmu_Circ_26986, suppressed LPS-induced HK-2 cells apoptosis via regulation of miRNA-29b-1-5p/PAK7 axis. Furthermore, sepsis patients with AKI had a higher level of hsa_Circ_0072463 compared to those without AKI. The sensitivity, specificity and AUC of hsa_Circ_0072463 were 78.8%, 87.9% and 0.866, respectively. Spearman's test indicated a noticeable positive correlation between plasma hsa_Circ_0072463 and serum creatinine in sepsis patients (r = 0.725). In summary, this study reveals that the mmu_Circ_26986/hsa_Circ_0072463 miRNA-29b-1-5p/PAK7 axis mediates septic AKI, and hsa_Circ_0072463 is a potential diagnostic marker for septic AKI.


Subject(s)
Acute Kidney Injury , MicroRNAs , Sepsis , Mice , Animals , Humans , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Acute Kidney Injury/genetics , MicroRNAs/genetics , Sepsis/complications , Sepsis/genetics , Apoptosis/genetics , Biomarkers
5.
Mol Carcinog ; 63(10): 1988-2000, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39031486

ABSTRACT

The effect of triiodothyronine (T3) on the phosphorylation of ERK and the occurrence and development of hepatocellular carcinoma (HCC) is controversial and remains to be clarified. In the present study, both in vitro (hepatoma cell lines) and in vivo (wild-type mice [WT] and mouse models of HCC [HrasG12Vand KrasG12Dtransgenic mice (Hras-Tg and Kras-Tg)]) systems were used to investigate the effect of T3 on p-ERK and hepatocarcinogenesis. The results showed that, in vitro, T3 treatment elevated the levels of p-ERK in hepatoma cells within 30 min. However, p-ERK levels returned to normal after 1 h with no significant effects on cellular proliferation or apoptosis. Interestingly, in vivo, T3 induced early rapid and transient activation of ERK and later persistent downregulation of p-ERK in liver tissues of WT. In Hras-Tg, liver weight, liver/body weight ratio, hepatic tumor numbers and sizes were significantly reduced withT3treatment compared with the untreated group. Furthermore, the levels of albumin, HrasG12V, and p-ERK in hepatic precancerous and tumor tissues were all significantly downregulated with T3 treatment; however, the levels of endogenous Hras were not affected. In WT, T3 also induced downregulation of Albumin in liver tissues, but without influence on the expression of endogenous Hras and p-MEK. Especially, the inhibitory effect of T3 on p-ERK and hepatic tumorigenesis and development without influence on the levels of KrasG12D and p-MEK was further confirmed in Kras-Tg. In conclusion, T3 suppresses hepatic tumorigenesis and development by independently and substantially inhibiting the phosphorylation of ERK in vivo.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Liver Neoplasms , Triiodothyronine , Animals , Triiodothyronine/pharmacology , Triiodothyronine/metabolism , Phosphorylation , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Humans , Carcinogenesis/metabolism , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Proliferation/drug effects , Mice, Transgenic , Extracellular Signal-Regulated MAP Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Apoptosis , Male , MAP Kinase Signaling System/drug effects
6.
Plant Physiol ; 191(1): 463-478, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36342216

ABSTRACT

Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ovule , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nuclear Proteins/metabolism
7.
Ann Neurol ; 93(1): 155-163, 2023 01.
Article in English | MEDLINE | ID: mdl-36251395

ABSTRACT

Here, we report the generation and comprehensive characterization of a knockin mouse model for the hotspot p.Arg87Cys variant of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) gene, which was recently identified in individuals diagnosed with West syndrome, a developmental and epileptic encephalopathy. The Cyfip2+/R87C mice recapitulated many neurological and neurobehavioral phenotypes of the patients, including spasmlike movements, microcephaly, and impaired social communication. Age-progressive cytoarchitectural disorganization and gliosis were also identified in the hippocampus of Cyfip2+/R87C mice. Beyond identifying a decrease in CYFIP2 protein levels in the Cyfip2+/R87C brains, we demonstrated that the p.Arg87Cys variant enhances ubiquitination and proteasomal degradation of CYFIP2. ANN NEUROL 2023;93:155-163.


Subject(s)
Adaptor Proteins, Signal Transducing , Spasms, Infantile , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Spasms, Infantile/genetics , Hippocampus/metabolism , Brain/metabolism , Fragile X Mental Retardation Protein
8.
Chemistry ; 30(10): e202303461, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38050714

ABSTRACT

With the increasing demand for low-cost and high-safety portable batteries, aqueous zinc-ion batteries (ZIBs) have been regarded as a potential alternative to the lithium-ion batteries, bringing about extensive research dedicated in the exploration of high-performance and highly reversible ZIBs. Although separators are generally considered as non-active components in conventional research on ZIBs, advanced separators designs seem to offer effective solutions to the majority of issues within ZIBs system. These issues encompass concerns related to the zinc anode, cathode, and electrolyte. Initially, we delve into the origins and implications of various inherent problems within the ZIBs system. Subsequently, we present the latest research advancements in addressing these challenges through separators engineering. This includes a comprehensive, detailed exploration of various strategies, coupled with instances of advanced characterizations to provide a more profound insight into the mechanisms that influence the separators. Finally, we undertake a multi-criteria evaluation, based on application standards for diverse substrate separators, while proposing guiding principles for the optimal design of separators in zinc batteries. This review aims to furnish valuable guidance for the future development of advanced separators, thereby nurturing progress in the field of ZIBs.

9.
Org Biomol Chem ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329421

ABSTRACT

The mechanisms underlying copper-mediated trifluoromethylation of benzylic C(sp3)-H bonds were investigated using density functional theory (DFT) calculations. Two distinct pathways were identified: radical recombination/reductive elimination and single-electron transfer (SET). In the radical recombination/reductive elimination pathway, the CuII species recombines with benzyl radicals to generate a CuIII intermediate, which subsequently undergoes reductive elimination. Conversely, the SET pathway involves single-electron transfer from benzyl radicals to CuII species, forming a cationic benzylic intermediate and CuI species, followed by coupling with a CF3 group coordinated to Cu. DFT calculations revealed that the radical recombination/reductive elimination pathway is favoured for trifluoromethylation of primary and secondary benzylic C(sp3)-H bonds, with the reductive elimination step being rate-determining. In contrast, the SET pathway exhibits preference for trifluoromethylation of tertiary benzylic C(sp3)-H bonds. These mechanistic insights have significant implications for enhancing the selectivity of copper-mediated trifluoromethylation reactions.

10.
Lung ; 202(5): 659-672, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153120

ABSTRACT

PURPOSE: Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. METHODS: We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Mouse body composition was assessed using dual-energy X-ray absorptiometry. Mouse lung function was measured using flexiVent. RESULTS: Contrary to prior publications, the KO was not neonatal lethal. KO mice had lower body weight and shorter tibial length than wild-type (WT) mice. Their body composition revealed lower soft weight, fat weight, and bone mineral content. Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. CONCLUSION: Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.


Subject(s)
ADAM Proteins , Genome-Wide Association Study , Lung , Mice, Knockout , Animals , Lung/metabolism , Humans , Mice , ADAM Proteins/genetics , Polymorphism, Single Nucleotide , Male , Disease Models, Animal , Respiratory Function Tests , Female , Vital Capacity , Body Composition/genetics
11.
Article in English | MEDLINE | ID: mdl-38430163

ABSTRACT

Background: A traditional Chinese medicine (TCM) formula, containing Astragalus membranaceus (Fisch.) Bunge, Aconitum wilsonii Stapf ex Veitch, Curcuma longa L., and Radix ophiopogonis (AACO), has therapeutic value for the treatment of chronic heart failure (CHF). Objective: This study intends to explore the pharmacological mechanism underlying the activity of the AACO formula against CHF. Materials and Methods: Using the TCM Systems Pharmacology database and Bioinformatics Analysis Tool for Molecular Mechanism of TCM, the active ingredients contained in the herbs of the AACO formula were screened. Meanwhile, the target genes related to these active ingredients were identified and genes correlated with CHF were screened. Protein-protein interaction networks were built to elucidate the relationships between the AACO formula and CHF. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis were carried out using the DAVID database. A "drug-component-target-disease" network was constructed with Cytoscape 3.7.0. The therapeutic effect of the AACO formula was proven by hemodynamic study, echocardiography evaluation, and histological analysis in transverse aortic constriction-induced CHF mice and was validated in vitro. Results: A total of 105 active ingredients and 1026 related targets were screened and identified, and 240 related targets overlapping with CHF were selected. According to GO analysis, the enriched genes participated in gene expression and cardiac contraction regulation by Ca2+ regulation. From KEGG analysis, the calcium axis was identified as one of the main mechanisms through which the AACO formula exerts an anti-CHF effect. AACO was validated to significantly improve cardiac diastolic and systolic functions in vivo via an increase in the rate of Ca2+ reuptake of the myocardial sarcoplasmic reticulum and improved myocardial contractility in vitro. Conclusions: Network pharmacology is a convenient method to study the complex pharmacological mechanisms of TCM. The calcium axis likely participates in the anti-CHF mechanism of AACO.

12.
Mikrochim Acta ; 191(3): 142, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367049

ABSTRACT

An electrochemiluminescence (ECL) sensor for determining bisphenol A (BPA) was prepared based on titanium dioxide (TiO2) and Co-MOF. TiO2 is a co-reaction promoter that amplifies the ECL signal in the Ru(bpy)32+-trinpropylamine (TPrA) system. When the electrode is modified with Co-MOF the ECL signal is significantly enhanced. This is because Co-MOF can not only be used as a co-reaction accelerator but also as a carrier to adsorb more luminescent substances. Possible mechanisms for amplifying the original signal through the synergistic action of the two substances are investigated. The ECL strength decreases with increasing concentrations of BPA, and the amount of BPA can be determined by the change in ECL signal strength (ΔI). Under optimal experimental conditions, the linear range of BPA was 2.0 × 10-10 to 2.0 × 10-5 M, with a determination limit of 6.7 × 10-11 M (3σ/m). The relative standard deviation (RSD) of the signal for ten consecutive measurements was 1.5%. The sensor can be used to detect BPA in bottled samples with recoveries of 96 to 105%.

13.
Mikrochim Acta ; 191(4): 215, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512545

ABSTRACT

An efficient and innovative electrochemiluminescence (ECL) sensor was developed for trace detection of cyfluthrin. The sensor utilized materials such as lotus root shaped carbon fiber (Co CNFs), cadmium selenide quantum dots (CdSe QDs), and Fe3O4 to amplify Ru(bpy)32+ signals. Co CNFs, with its large specific surface area and porosity, served the purpose of not only enhancing the stability of the sensor by fixing CdSe QDs and Ru(bpy)32+ on the Co CNFs/GCE, but also facilitating electron transfer. CdSe QDs was involved in the luminescence reaction and collaborated with Ru(bpy)32+ to enhance the sensor's sensitivity, while Fe3O4 promoted electron transfer in the system due to its large surface area. The solid-state ECL sensor achieved satisfactory signal under the synergistic action of these components. The ECL signal of the sensor was quenched by cyfluthrin, and a favorable linear relationship was observed between the sensor and cyfluthrin in the concentration range 1 × 10-12 to 1 × 10-6 M. The detection limit of the sensor was 3.3 × 10-13 M (S/N = 3). The utilization of lotus root shaped carbon fiber, CdSe QDs, and Fe3O4 in the Ru(bpy)32+ system demonstrated a synergistic effect for cyfluthrin detection, presenting a new approach for the rapid determination analysis of pesticide residues in foods.

14.
Mikrochim Acta ; 191(5): 269, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38630309

ABSTRACT

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Subject(s)
Luminescence , Molecular Imprinting , Pyrethrins , Luminol , Molecularly Imprinted Polymers
15.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125768

ABSTRACT

Xylan, one of the most important structures and polysaccharides, plays critical roles in plant development, growth, and defense responses to pathogens. Glucuronic acid substitution of xylan (GUX) functions in xylan sidechain decoration, which is involved in a wide range of physiological processes in plants. However, the specifics of GUXs in trees remain unclear. In this study, the characterization and evolution of the GUX family genes in E. grandis, a fast-growing forest tree belonging to the Myrtaceae family, were performed. A total of 23 EgGUXs were identified from the E. grandis genome, of which all members contained motif 2, 3, 5, and 7. All GUX genes were phylogeneticly clustered into five distinct groups. Among them, EgGUX01~EgGUX05 genes were clustered into group III and IV, which were more closely related to the AtGUX1, AtGUX2, and AtGUX4 members of Arabidopsis thaliana known to possess glucuronyltransferase activity, while most other members were clustered into group I. The light-responsive elements, hormone-responsive elements, growth and development-responsive elements, and stress-responsive elements were found in the promoter cis-acting elements, suggesting the expression of GUX might also be regulated by abiotic factors. RNA-Seq data confirmed that EgGUX02, EgGUX03, and EgGUX10 are highly expressed in xylem, and EgGUX09, EgGUX10, and EgGUX14 were obviously responses to abiotic stresses. The results of this paper will provide a comprehensive determination of the functions of the EgGUX family members, which will further contribute to understanding E. grandis xylan formation.


Subject(s)
Eucalyptus , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Xylans , Eucalyptus/genetics , Xylans/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Promoter Regions, Genetic
16.
BMC Nurs ; 23(1): 658, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285294

ABSTRACT

BACKGROUND: Empathy is important in hospice nursing clinics and may influence nurses' professional quality of life (ProQOL). However, present studies ignoring each empathic dimension, and few researches have explored the correlation between empathy and ProQOL in hospice nurses in Asia. To better understand hospice nurses' empathy abilities in China and its relationship with ProQOL, the aim of this study was to identify the latent profiles and its influencing factors of hospice nurses' empathy ability, as well as differences in ProQOL across each latent profile. METHODS: A cross-sectional study was conducted from October 2021 to September 2022, and a total of 725 hospice nurses were recruited from different geographic regions in China. Participants completed the Empathy Ability Scale for Hospice Nurses and the Brief Professional Quality of Life Scale. Latent profile analysis (LPA) was employed to identify latent profiles of empathy ability among hospice nurses in China. The predictors of hospice nurses' empathy ability in different latent profiles were assessed using multinomial logistic regression analysis. One-way ANOVA test and the Kruskal-Wallis test were used to compare the ProQOL scores in each latent profile of nurses' empathy ability. RESULTS: This study identified three latent profiles of hospice nurses' empathy ability, and those profiles labelled "poor empathy ability-high surface empathy expression" (n = 216, 29.8%), "moderate empathy ability" (n = 359, 49.5%) and "high empathy ability-high deep empathy expression" (n = 150, 20.7%). Multinomial logistic regression analysis suggested that age, hospital level, whether income meets expectations, interests in hospice care work, hospice work experience, and receiving psychological counselling were predictors of hospice nurses' profile membership of empathy ability. The scores of compassion satisfaction (CS) and burnout (BO) in ProQOL were significantly different across each profile (P < 0.001), while scores of secondary traumatic stress (STS) in ProQOL were not different across each profile (P = 0.294). CONCLUSIONS: Hospice nurses' empathy ability was divided into three latent profiles, and enhancing empathy ability may be conducive to improving hospice nurses' CS, while reducing BO, thus fostering their overall quality of life. Nursing managers should identify hospice nurses at higher risk of BO and implement targeted interventions focused on enhancing nurse's empathy abilities.

17.
BMC Nurs ; 23(1): 20, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183055

ABSTRACT

BACKGROUND: Persistent pain is the most reported symptom in patients with rheumatoid arthritis (RA); however, effective and brief assessment tools are lacking. We validated the Chinese version of the Global Pain Scale (C-GPS) in Chinese patients with RA and proposed a short version of the C-GPS (s-C-GPS). METHOD: The study was conducted using a face-to-face questionnaire survey with a multicenter cross-sectional design from March to December 2019. Patients aged > 18 years who met the RA diagnostic criteria were included. Based on the classical test theory (CTT) and the item response theory (IRT), we assessed the validity and reliability of the C-GPS and the adaptability of each item. An s-C-GPS was developed using IRT-based computerized adaptive testing (CAT) analytics. RESULTS: In total, 580 patients with RA (mean age, 51.04 ± 24.65 years; mean BMI, 22.36 ± 4.07 kg/m2), including 513 (88.4%) women, were included. Most participants lived in a suburb (49.3%), were employed (72.2%) and married (91.2%), reported 9-12 years of education (66.9%), and had partial medical insurance (57.8%). Approximately 88.1% smoked and 84.5% drank alcohol. Analysis of the CTT demonstrated that all items in the C-GPS were positively correlated with the total scale score, and the factor loadings of all these items were > 0.870. A significant positive relationship was found between the Visual Analog Scale (VAS) and the C-GPS. IRT analysis showed that discrimination of the C-GPS was between 2.271 and 3.312, and items 6, 8, 13, 14, and 16 provided a large amount of information. Based on the CAT and clinical practice, six items covering four dimensions were included to form the s-C-GPS, all of which had very high discrimination. The s-C-GPS positively correlated with the VAS. CONCLUSION: The C-GPS has good reliability and validity and can be used to evaluate pain in RA patients from a Chinese cultural background. The s-C-GPS, which contains six items, has good criterion validity and may be suitable for pain assessment in busy clinical practice. TRIAL REGISTRATION: This cross-sectional study was registered in the Chinese Clinical Trial Registry (ChiCTR1800020343), granted on December 25, 2018.

18.
J Cell Mol Med ; 27(9): 1261-1276, 2023 05.
Article in English | MEDLINE | ID: mdl-36974922

ABSTRACT

A few studies suggested that CircRNAs were involved in the development of septic AKI. However,the role and regulation mechanism of CircRNA_35953 in septic AKI remains unclear. Here, we found that Circ_35953 was induced by LPS via activation of NF-κB signal in BUMPT cells. Functionally, Circ_35953 mediated the LPS induced the apoptosis in BUMPT cells. Moreover, we demonstrated that Circ_35953 sponged miR-7219-5p to upregulate the expression of HOOK3 and IGFBP7. Finally, we verified that knock down of Circ_35953 alleviated the progression of CLP-induced AKI via targeting the miR-7219-5p/HOOK3 and IGFBP7 signal. Collectively, the data suggested that Circ_35953 /miR-7219-5p/HOOK3 and IGFBP7 axis mediated the septic AKI, which also revealed a potential mechanism of septic AKI.


Subject(s)
Acute Kidney Injury , MicroRNAs , Humans , NF-kappa B/genetics , Lipopolysaccharides , Apoptosis/genetics , RNA, Circular/genetics , Acute Kidney Injury/genetics , MicroRNAs/genetics , Microtubule-Associated Proteins
19.
J Am Chem Soc ; 145(13): 7446-7453, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36947714

ABSTRACT

Herein, a series of face-capped (Tr2M3)4L4 (Tr = cycloheptatrienyl cationic ring; M = metal; L = organosulfur ligand) tetrahedral cages 1-3 functionalized with 12 appended crown ether moieties were designed and synthesized. The reversible binding of ammonium cations with peripheral crown ether moieties to adjust internal guest-binding was realized. Combination of a bisammonium linker and cage 3 led to the formation of a supramolecular gel SPN1 via host-guest interactions between the crown ether moieties and ammonium salts. The obtained supramolecular gel exhibited multiple-stimuli responsiveness, injectability, and excellent self-healing properties and could be further developed to a SPN1-based drug delivery system. In addition, the storage modulus of SPN1 was 20 times higher than that of the model gel without Pd-Pd bonded blocks, and SPN1 had better self-healing properties compared with the latter, demonstrating the importance of such cages in improving mechanical strength without losing the dynamic properties of the material. The cytotoxicity in vitro of the drug-loaded (doxorubicin or methotrexate) SPN1 was significantly improved compared to that of free drugs.

20.
Mol Med ; 29(1): 9, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653745

ABSTRACT

BACKGROUND: Retinal ganglion cells (RGCs) apoptosis is a vital manifestation of retinal ischemia/reperfusion (I/R) injury, yet the underlying mechanisms are not well understood. The contribution of long noncoding RNAs (lncRNAs) to this cellular process is currently being explored. Based on a lncRNA chip assay, we aimed to investigate the role of lncRNA uc007nnj.1 in the pathological process of ischemia-induced RGCs apoptosis. METHODS: Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 h to construct an ischemic model in RGCs, and elevation of intraocular pressure to 120 mm Hg for 1 h was used to construct a mouse model of retinal I/R injury. RESULTS: In this study, lncRNA uc007nnj.1 was highly upregulated in response to I/R injury in RGCs and mouse retinas. In addition, lncRNA uc007nnj.1 knockdown reduced retinal neuronal cell apoptosis in vitro and in vivo and significantly improved retinal function. DISCUSSION: Mechanistically, the results demonstrated that lncRNA uc007nnj.1 acts as ceRNA competitively binding miR-155-5p, thereby enhancing the expression levels of Tle4, thus aggravating ischemia-related apoptosis in RGCs. CONCLUSIONS: Finally, our study identifies the lncRNA uc007nnj.1/miR-155-5p/Tle4 axis as a potential target for the prevention of I/R-induced retinal neuronal death.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Reperfusion Injury , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Reperfusion , Reperfusion Injury/metabolism , Apoptosis/genetics , Ischemia , Repressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL