Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genomics ; 116(3): 110855, 2024 May.
Article in English | MEDLINE | ID: mdl-38703968

ABSTRACT

Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.


Subject(s)
Clostridium butyricum , Genome, Bacterial , Phylogeny , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Whole Genome Sequencing , Bacteriocins/genetics , Bacteriocins/biosynthesis , Industrial Microbiology , Botulinum Toxins/genetics , Virulence Factors/genetics
2.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38670931

ABSTRACT

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

3.
Toxicol Appl Pharmacol ; 483: 116835, 2024 02.
Article in English | MEDLINE | ID: mdl-38272317

ABSTRACT

Actin-interacting proteins are important molecules for filament assembly and cytoskeletal signaling within vascular endothelium. Disruption in their interactions causes endothelial pathogenesis through redox imbalance. Actin filament redox regulation remains largely unexplored, in the context of pharmacological treatment. This work focused on the peptidyl methionine (M) redox regulation of actin-interacting proteins, aiming at elucidating its role on governing antioxidative signaling and response. Endothelial EA.hy926 cells were subjected to treatment with salvianolic acid B (Sal B) and tert-butyl-hydroperoxide (tBHP) stimulation. Mass spectrometry was employed to characterize redox status of proteins, including actin, myosin-9, kelch-like erythroid-derived cap-n-collar homology-associated protein 1 (Keap1), plastin-3, prelamin-A/C and vimentin. The protein redox landscape revealed distinct stoichiometric ratios or reaction site transitions mediated by M sulfoxide reductase and reactive oxygen species. In comparison with effects of tBHP stimulation, Sal B treatment prevented oxidation at actin M325, myosin-9 M1489/1565, Keap1 M120, plastin-3 M592, prelamin-A/C M187/371/540 and vimentin M344. For Keap1, reaction site was transitioned within its scaffolding region to the actin ring. These protein M oxidation regulations contributed to the Sal B cytoprotective effects on actin filament. Additionally, regarding the Keap1 homo-dimerization region, Sal B preventive roles against M120 oxidation acted as a primary signal driver to activate nuclear factor erythroid 2-related factor 2 (Nrf2). Transcriptional splicing of non-POU domain-containing octamer-binding protein was validated during the Sal B-mediated overexpression of NAD(P)H dehydrogenase [quinone] 1. This molecular redox regulation of actin-interacting proteins provided valuable insights into the phenolic structures of Sal B analogs, showing potential antioxidative effects on vascular endothelium.


Subject(s)
Actins , Antioxidants , Benzofurans , Depsides , Antioxidants/pharmacology , Antioxidants/metabolism , Actins/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Vimentin/metabolism , Oxidative Stress , Methionine , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Cytoskeletal Proteins/metabolism , Myosins/metabolism , Myosins/pharmacology
4.
J Org Chem ; 89(5): 2847-2857, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38364825

ABSTRACT

In recent years, the application of fluorinated alcohols as solvents, cosolvents, or additives has become important in modern organic synthesis. However, their potential as efficient catalysts in organic synthesis has not been well-explored. In this article, we report on the development of a one-pot sequential cascade reaction of p-quinone methides with difluoroenoxysilanes using hexafluoroisopropanol as catalyst. This reaction allows for the preparation of fluorinated multisubstituted oxa-spiro[4,5]cyclohexadienones. By using 50 mol % 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP), the reaction proceeds smoothly to yield 1,6-conjugated products, which are then subjected to oxidative dearomatization/hemiacetalization using PhI(OAc)2. The overall process affords moderate to high yields and excellent diastereoselectivities.

5.
Nano Lett ; 23(11): 4807-4814, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37224193

ABSTRACT

Heterogeneities in structure and polarization have been employed to enhance the energy storage properties of ferroelectric films. The presence of nonpolar phases, however, weakens the net polarization. Here, we achieve a slush-like polar state with fine domains of different ferroelectric polar phases by narrowing the large combinatorial space of likely candidates using machine learning methods. The formation of the slush-like polar state at the nanoscale in cation-doped BaTiO3 films is simulated by phase field simulation and confirmed by aberration-corrected scanning transmission electron microscopy. The large polarization and the delayed polarization saturation lead to greatly enhanced energy density of 80 J/cm3 and transfer efficiency of 85% over a wide temperature range. Such a data-driven design recipe for a slush-like polar state is generally applicable to quickly optimize functionalities of ferroelectric materials.

6.
Molecules ; 29(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338440

ABSTRACT

A novel, efficient and environmentally friendly solvent-free and catalyst-free approach for the synthesis of structurally diverse gem-difluorinated and polyfluoroarylated derivatives with readily available nucleophilic and electrophilic fluorine-containing reaction partners, difluoroenoxysilane and pentafluorobenzaldehyde, is described. This neat protocol is induced by the direct hydrogen-bond interactions between fluorinated and non-fluorinated reactants without the use of heavy metal catalysts or volatile organic solvents and with no need for column chromatographic separation for most cases.

7.
J Org Chem ; 88(7): 4790-4798, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36989386

ABSTRACT

A hexafluoroisopropanol (HFIP)-promoted hydroxydifluoromethylation of aniline, indole, and pyrrole derivatives with difluoroacetaldehyde ethyl hemiacetal has been developed. This protocol provides a facile and straightforward approach to access diverse difluoromethylated carbinols in good to excellent yields under mild conditions. Furthermore, gram-scale and synthetic derivatization experiments have also been demonstrated.

8.
J Fluoresc ; 33(3): 1191-1200, 2023 May.
Article in English | MEDLINE | ID: mdl-36629965

ABSTRACT

Liver fatty acid binding protein (L-FABP) is an intercellular lipid chaperone protein that selectively combines with unsaturated free fatty acids and transports them to mitochondria or peroxisomes. L-FABP is a promising biomarker for the early detection of renal diseases in humans. Herein a chemiluminescence method (CLIA) was demonstrated to measure the level of urinary L-FABP in the urinary samples. An anti-(L-FABP)-magnetic beads complex was prepared to capture the analyte target. Sensitivity, precision, accuracy, interference effect, high-dose hook effect of the developed assay were evaluated. Under the suitable experimental parameters, the established method have a wide linear range (0.01-10 ng/mL) and also showed a sufficiently low limit of detection of 0.0060 ng/mL. Besides, the satisfactory recoveries of the method in the urinary were ranged from 97.74%-112.32%, which was well within the requirement of clinical analysis. Furthermore, this proposed method has been successfully applied to the clinical determination of L-FABP in patients who have been diagnosed with kidney disease. The results showed that CLIA could accurately and rapidly determine the urinary level of L-FABP with high-throughput, which could be useful as a new tool to predict complications in patients with kidney disease. The clinical trial was approved by Shuyang Hospital of Traditional Chinese Medicine Ethics Committee: 20,210,202-001 at February 2, 2021.


Subject(s)
Kidney Diseases , Luminescence , Humans , Kidney Diseases/urine , Immunoassay , Fatty Acid-Binding Proteins/urine , Biomarkers/urine , Liver
9.
Microb Cell Fact ; 21(1): 173, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999638

ABSTRACT

BACKGROUND: Bacillus subtilis, an important industrial microorganism, is commonly used in the production of industrial enzymes. Genome modification is often necessary to improve the production performance of cell. The dual-plasmid CRISPR-Cas9 system suitable for iterative genome editing has been applied in Bacillus subtilis. However, it is limited by the selection of knockout genes, long editing cycle and instability. RESULTS: To address these problems, we constructed an all-in-one plasmid CRISPR-Cas9 system, which was suitable for iterative genome editing of B. subtilis. The PEG4000-assisted monomer plasmid ligation (PAMPL) method greatly improved the transformation efficiency of B. subtilis SCK6. Self-targeting sgRNArep transcription was tightly controlled by rigorous promoter PacoR, which could induce the elimination of plasmids after genome editing and prepare for next round of genome editing. Our system achieved 100% efficiency for single gene deletions and point mutations, 96% efficiency for gene insertions, and at least 90% efficiency for plasmid curing. As a proof of concept, two extracellular protease genes epr and bpr were continuously knocked out using this system, and it only took 2.5 days to complete one round of genome editing. The engineering strain was used to express Douchi fibrinolytic enzyme DFE27, and its extracellular enzyme activity reached 159.5 FU/mL. CONCLUSIONS: We developed and applied a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in B. subtilis, which required only one plasmid transformation and curing, and accelerated the cycle of genome editing. To the best of our knowledge, this is the rapidest iterative genome editing system for B. subtilis. We hope that the system can be used to reconstruct the B. subtilis cell factory for the production of various biological molecules.


Subject(s)
Bacillus subtilis , Gene Editing , Bacillus subtilis/genetics , CRISPR-Cas Systems , Gene Editing/methods , Gene Knockout Techniques , Plasmids/genetics
10.
J Org Chem ; 87(2): 1144-1153, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34994195

ABSTRACT

A novel efficient HFIP-catalyzed synthesis of structurally diverse 2,2-difluoro-3-hydroxy-1,4-diketone derivatives from readily available glyoxal monohydrates and difluoroenoxysilanes is described. This convenient protocol is induced by the distinctive fluorine effect of the reactants and the fluoroalcohol catalyst, which represents the first application of fluoroalcohol catalysis in a Mukaiyama aldol reaction.


Subject(s)
Glyoxal , Aldehydes , Catalysis , Molecular Structure , Stereoisomerism
11.
J Org Chem ; 87(9): 6352-6361, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35466680

ABSTRACT

A HFIP-promoted highly selective hydroxyalkylation of aniline derivatives with arylglyoxal hydrates has been realized. The reaction produces various N,N-dialkylanilines and their derivatives with α-hydroxy carbonyl units in good to excellent yields under mild conditions. Furthermore, the synthetic potential of this method has been demonstrated by the facile synthesis of several structurally interesting molecules such as benzil, 1,2,4-triazine, quinoxaline, hydantoin, and 2-thiohydantoin with aromatic amine units.

12.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): 847-854, 2022 May 01.
Article in English | MEDLINE | ID: mdl-36215446

ABSTRACT

With the vigorous development of vision techniques, simultaneous localization and mapping (SLAM) has shown the capability of navigating autonomous robots in global-navigation-satellite-system-denied environments. However, the long-term robust navigation of lightweight autonomous robots in outdoor environments with complex interferences, such as illumination change, dynamic objects, and electromagnetic interference, is still a great challenge. In this paper, a polarization sensor-aided SLAM (POL-SLAM) that can provide absolute heading constraints for pure SLAM is proposed. POL-SLAM is a lightweight, tightly coupled system consisting of a polarization sensor and binocular camera. By means of an initialization that uses a polarization sensor, an absolute heading angle for the entire map is designed. Additionally, an algorithm to eliminate mismatching points using the matching point vector is proposed. The objective function of bundle adjustment is then deduced according to the re-projection error and polarization sensor. The vehicle test shows that the yaw and trajectory accuracies of POL-SLAM are significantly improved compared to pure SLAM. The yaw and trajectory accuracies are increased by 43.1% and 36.6%, respectively. These results indicate that the proposed POL-SLAM can improve the reliability and robustness of pure SLAM and can be used in lightweight autonomous robots in outdoor environments.


Subject(s)
Robotics , Algorithms , Biomimetics , Reproducibility of Results , Robotics/methods
13.
FASEB J ; 34(1): 1065-1078, 2020 01.
Article in English | MEDLINE | ID: mdl-31914668

ABSTRACT

The hypoglycemic effect of Phellinus linteus polysaccharide extract (PLPE) has been documented in several previous studies, but the functional interactions among PLPE, gut microbiota, and the hypoglycemic effect remain unclear. We examined the regulatory effect of PLPE on gut microbiota, and the molecular mechanism underlying improvement of insulin resistance, using a type 2 diabetic rat model. Here, 24 male Sprague-Dawley rats were randomly divided into four groups that were subjected to intervention of saline (normal and model control group), metformin (120 mg/kg.bw), and PLPE (600 mg/kg.bw) by oral administration. After 8 weeks of treatment, PLPE increased levels of short-chain fatty acids (SCFAs) by enhancing abundance of SCFA-producing bacteria. SCFAs maintained intestinal barrier function and reduced lipopolysaccharides content in blood, thereby helping to reduce systemic inflammation and reverse insulin resistance. Our findings suggest that PLPE (in which polysaccharides are the major component) has potential application as a prebiotic for regulating gut microbiota composition in diabetic patients.


Subject(s)
Gene Expression Regulation , Insulin Resistance , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Animals , Carrier Proteins/metabolism , Fatty Acids, Volatile/blood , Gastrointestinal Microbiome , Glucose Tolerance Test , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/blood , Male , Phellinus , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
14.
J Org Chem ; 85(16): 10638-10647, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806101

ABSTRACT

An environmentally benign system for the direct alkylation of lawsones and 4-hydroxycoumarins with alcohols in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) is reported. The reaction proceeded smoothly via a dehydrative cross-coupling process by utilizing the unique properties of HFIP. A variety of alkylated products and subsequent one-pot cyclized products (pyranonaphthoquinones and pyranocoumarins) could be obtained in 40-93% yields.

15.
Phys Chem Chem Phys ; 22(24): 13729-13736, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32530012

ABSTRACT

2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a representative of the new generation of low-sensitivity energetic materials and has been applied extensively in formulations as an insensitive high-energetic ingredient. Although the initial thermal decomposition mechanism of LLM-105 has been studied based on quantum chemical calculations, the internal mechanism of the two-step thermal decomposition still lacks experimental research. Thus, this study involves a detailed experimental study to reveal the mechanism of the two-step thermal decomposition of LLM-105. The results showed that LLM-105 decay was a consecutive reaction. The first-step reaction dominated the early stage of the LLM-105 decomposition, and its products participated in the reaction of the second step. The cleavage of NO2 and NH2 groups of LLM-105 mainly occurred in the first step, while gaseous products NO and C2N2 were released during the second reaction step. The first-step reaction had a higher oxygen consumption rate and a lower carbon consumption rate, producing more heat due to more extensive oxidation of the carbon backbone. The difference in the oxidative ability and reaction rate between the two steps resulted in a two-step exothermic and mass loss behavior. This study provides further insights into the entire reaction process of LLM-105 and would be helpful for its better application and for the design of new explosives.

16.
Appl Opt ; 59(9): 2955-2962, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32225849

ABSTRACT

High precision and reliability attitude measurement play an important role in autonomous unmanned navigation. Finding inspiration from desert ants, known as highly efficient navigators who can find their way after foraging for hundreds of meters from their home in hostile environments, we propose an attitude measurement method using polarization skylight and gravitational field. Contrary to the previous method, we utilize three-dimensional polarization vectors and any one-dimensional output of the accelerometers to calculate attitudes. In addition, we designed an accelerometer component selection algorithm, which is to select the one-dimensional component with the minimum motion acceleration from the output of the three-dimensional accelerometer. With this method, even if the carriers remain in a maneuvering state, the motion acceleration of the vehicle will have less impact on the accuracy of attitude measurement. To evaluate the performance of our method, the outdoor experiment was carried out to compare our method with existing traditional methods. Comparison results show that our method has higher measurement accuracy than others and is still applicable in the case of carriers maneuvering in practice under a clear sky.

17.
Appl Opt ; 58(34): 9331-9337, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31873522

ABSTRACT

Consistency has always been an important topic in formation cooperation research. Traditional navigation methods, such as inertial navigation and geomagnetic navigation, have the disadvantages of error accumulation and low stability, thus reducing the consistency of formation. We propose to use the skylight polarization pattern to provide heading angle reference for formation cooperation of multi-agents. The experimental results show that the polarization navigation has good stability and no error accumulation. First, we analyzed the consistency of using the skylight polarization pattern to provide a heading reference for formation experiments. Then, based on the bionic polarization navigation sensor, we measured the difference of the skylight polarization azimuth of different observers at twilight. Further, a mobile robot platform was built with its heading angle provided by a polarization navigation sensor. Finally, we present an overview of a 3-robots platform formation experiment at twilight.

18.
Sensors (Basel) ; 19(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394764

ABSTRACT

A bio-inspired polarization sensor with lenses for navigation was evaluated in this study. Two new calibration methods are introduced, referred to as "central-symmetry calibration" (with an integrating sphere) and "noncontinuous calibration". A comparison between the indoor calibration results obtained from different calibration methods shows that the two proposed calibration methods are more effective. The central-symmetry calibration method optimized the nonconstant calibration voltage deviations, caused by the off-axis feature of the integrating sphere, to be constant values which can be calibrated easily. The section algorithm proposed previously showed no experimental advantages until the central-symmetry calibration method was proposed. The outdoor experimental results indicated that the indoor calibration parameters did not perform very well in practice outdoor conditions. To establish the reason, four types of calibration parameters were analyzed using the replacement method. It can be concluded that three types can be easily calibrated or affect the sensor accuracy slightly. However, before the sensor is used outdoors every time, the last type must be replaced with the corresponding outdoor parameter, and the calculation needs a precise rotary table. This parameter, which is mainly affected by the spectrum of incident light, is the main factor determining the sensor accuracy. After calibration, the sensor reaches an indoor accuracy of ±0.009° and a static outdoor accuracy of ±0.05° under clear sky conditions. The dynamic outdoor experiment shows a ±0.5° heading deviation between the polarization sensor and the inertial navigation system with a ±0.06° angular accuracy.

19.
Entropy (Basel) ; 21(3)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-33267003

ABSTRACT

CoCrFeNiPdMnx (x = 0, 0.2, 0.4, 0.6, 0.8) high entropy alloys (HEAs) were prepared and characterized. With an increase in Mn addition, the microstructures changed from dendrites (CoCrFeNiPd with a single face-centered-cubic (FCC) phase) to divorced eutectics (CoCrFeNiPdMn0.2 and CoCrFeNiPdMn0.4), to hypoeutectic microstructures (CoCrFeNiPdMn0.6), and finally to seaweed eutectic dendrites (CoCrFeNiPdMn0.8). The addition of Mn might change the interface energy anisotropy of both the FCC/liquid and MnPd-rich intermetallic compound/liquid interfaces, thus forming the seaweed eutectic dendrites. The hardness of the FCC phase was found to be highly related to the solute strengthening effect, the formation of nanotwins and the transition from CoCrFeNiPd-rich to CoCrFeNi-rich FCC phase. Hierarchical nanotwins were found in the MnPd-rich intermetallic compound and a decrease in either the spacing of primary twins or secondary twins led to an increase in hardness. The designing rules of EHEAs were discussed and the pseudo binary method was revised accordingly.

20.
Sensors (Basel) ; 18(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29315256

ABSTRACT

This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

SELECTION OF CITATIONS
SEARCH DETAIL