Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Plant Physiol ; 194(4): 2755-2770, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38235781

ABSTRACT

Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.


Subject(s)
Ascomycota , Cyclopentanes , Malus , Oxylipins , Malus/genetics , Malus/metabolism , Glutamine/metabolism , Valine/metabolism , Signal Transduction , Plant Diseases/genetics
2.
Biochem Biophys Res Commun ; 598: 32-39, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35151201

ABSTRACT

Alveolar macrophage activation and apoptosis are vital contributors to sepsis-associated acute lung injury (ALI). However, the mechanisms of alveolar macrophage activation are yet to be clarified. Death-associated protein kinase 1 (DAPK1) is one of the potential candidates that play crucial roles in regulating alveolar macrophage inflammation. Herein, we found that primary human bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) antagonize LPS-induced inflammation in the THP-1 human macrophage-like cell line. Mechanistically, LPS stimulation elevates the expression of DAPK1 and the inflammation markers in THP-1 cells, while BMSC-derived EVs inhibit the expression of DAPK1 and inflammation through delivering miR-191, which can target the 3'-UTR of the DAPK1 mRNA and therefore suppress its translation. The importance of DAPK1 in the activation of THP-1 is also stressed in this study. Our findings provide evidence that BMSC-derived EVs regulate the alveolar macrophage inflammation and highlight BMSC-derived EVs as a potential vehicle to deliver biomacromolecules to macrophages.


Subject(s)
Death-Associated Protein Kinases/genetics , Extracellular Vesicles/genetics , Inflammation/etiology , Macrophage Activation/physiology , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , 3' Untranslated Regions , Culture Media, Conditioned/pharmacology , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , Lipopolysaccharides/toxicity , Macrophage Activation/genetics , MicroRNAs/pharmacology , Promoter Regions, Genetic , THP-1 Cells
3.
J Phys Chem Lett ; 14(14): 3506-3511, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37014281

ABSTRACT

The photoluminescence (PL) of CH3NH3PbBr3 (MAPbBr3), from thin films to nanoparticles, has been widely studied, providing information about charge carrier dynamics. However, the other energy dissipative channel, nonradiative relaxation, has not been thoroughly investigated due to a lack of proper technology. In this work, we simultaneously investigated the PL and photothermal (PT) properties of single MAPbBr3 microcrystals (MCs) by a home-built PL and PT microscope. In addition to the direct observation of the heterogeneity of the PL and PT images and kinetics of different MCs, we demonstrated the variation in the absorption of single MAPbBr3 MCs, which was believed to be constant. We also proved that more absorbed energy dissipated from the nonradiative channel at higher heating power. These results show that PL and PT microscopy is an effective and convenient method to investigate the charge carrier behaviors of optoelectronic materials at the single particle level for a deep understanding of their photophysical processes.

4.
Bioengineered ; 12(2): 10666-10673, 2021 12.
Article in English | MEDLINE | ID: mdl-34787069

ABSTRACT

Temporal lobe epilepsy (TLE) often occurs in childhood and is the most common type of epilepsy. Studies have confirmed that long non-coding RNAs (lncRNAs) can affect the progression of neurological diseases. This study explored the expression level of lncRNA TUG1 in TLE children and its clinical significance and investigated its role in hippocampal neurons. 86 healthy individuals and 88 TLE children were recruited. The expressions of lncRNA TUG1 and miR-199a-3p in serum were detected by qRT-PCR. Hippocampal neurons were treated with non-Mg2+ to establish TLE cell model. MTT assay and flow cytometry assay was used to detect the effect of lncRNA TUG1 on the proliferation and apoptosis of hippocampal neurons. A dual-luciferase reporter assay was done to confirm the target relationship. The expression of lncRNA TUG1 was increased in TLE children compared with the control group. The diagnostic potential was reflected by the receiver operator characteristic (ROC) curve, with the AUC of 0.915 at the cutoff value of 1.256. Elevated levels of TUG1 were detected in TLE cell models, and TUG1 knockout could enhance cell activity and inhibit cell apoptosis. MiR-199a-3p was the target of TUG1. Clinically, the serum miR-199a-3p levels showed a negative association with TUG1. LncRNA TUG1 may be a biomarker of TLE diagnosis in children, and can regulate hippocampal neuron cell activity and apoptosis via sponging miR-199a-3p.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , MicroRNAs/metabolism , Neurons/pathology , RNA, Long Noncoding/metabolism , Animals , Animals, Newborn , Base Sequence , Child , Epilepsy, Temporal Lobe/blood , Epilepsy, Temporal Lobe/diagnosis , Female , Humans , Male , MicroRNAs/genetics , RNA, Long Noncoding/blood , RNA, Long Noncoding/genetics , ROC Curve , Rats
5.
Rev Sci Instrum ; 92(8): 083701, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34470388

ABSTRACT

In this work, we developed a fluorescence and photothermal microscope with extremely large scanning range and high spatial resolution. We demonstrated the capability of this instrument by simultaneously measuring the photoluminescence and photothermal signals of the CH3NH3PbI3 (MAPbI3) film. After scanning the MAPbI3 film on the scale of centimeters, we can obtain information of both emissive and nonemissive processes with a resolution of 200 nm at any location of the large area. We can clearly see the localized photothermal signal while the photoluminescence signal is uniform. These results directly prove that the emissive recombination happens all over the materials, but the nonemissive recombination happens only at certain localized quenching sites. The fluorescence and photothermal microscope with both large scanning range and high spatial resolution can provide information of all the relaxation channels of the excitons, showing potential applications for investigation of photophysical mechanisms in photoelectric materials.

6.
J Chin Med Assoc ; 84(5): 510-516, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33742994

ABSTRACT

BACKGROUND: The aim of the present study is to explore the expression level and the clinical significance of miR-194-5p to the children with temporal lobe epilepsy, and investigate its functions in regulating cell behaviors of hippocampal neurons. METHODS: The expression level of miR-194-5p was detected in the serum of 59 temporal lobe epilepsy (TLE) children and 63 healthy children. To further study the role of miR-194-5p in the development of TLE in children, the epileptiform discharge model was established in rat hippocampal neurons to mimic TLE conditions in children. Receiver operator characteristic (ROC) curves and area under the ROC curve were established to evaluate the diagnostic value of serum microRNAs to the differentiation of the TLE group and healthy group. The influence of miR-194-5p on the proliferation and apoptosis of hippocampus neurons was examined by using MTT and flow cytometric apoptosis assay. Luciferase reporter assay was performed to confirm the target gene of miR-194-5p. RESULTS: The result demonstrated that miR-194-5p was significantly dysregulated in plasma of TLE patients. Analysis of ROCs showed that the miR-194-5p had high specificity and sensitivity in the diagnosis of the TLE in children. The expression of miR-194-5p was found to increase in the hippocampal cells cultured in the magnesium-free medium through quantitative real-time polymerase chain reaction. Hyper-expressed of miR-194-5p reversed TLE-induced reduction for the cell viability, and inhibited the cell apoptosis induced by TLE. Insulin-like growth factor 1 receptor (IGF1R) was proved to be a direct target gene of miR-194-5p. CONCLUSION: MiR-194-5p is a likely potential biomarker and treatment target of TLE in children. IGF1R might be involved in the regulatory role of miR-194-5p in hippocampus neuron apoptosis.


Subject(s)
Apoptosis , Biomarkers , Cell Proliferation , Epilepsy, Temporal Lobe/diagnosis , Hippocampus/metabolism , MicroRNAs/blood , MicroRNAs/metabolism , Adolescent , Child , Female , Humans , Male , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction
7.
PLoS One ; 10(5): e0125184, 2015.
Article in English | MEDLINE | ID: mdl-25932998

ABSTRACT

In the last 20 years or so, chemists and molecular biologists have synthesized some novel DNA polyhedra. Polyhedral links were introduced to model DNA polyhedra and study topological properties of DNA polyhedra. As a very powerful invariant of oriented links, the Homfly polynomial of some of such polyhedral links with small number of crossings has been obtained. However, it is a challenge to compute Homfly polynomials of polyhedral links with large number of crossings such as double crossover 3-regular links considered here. In this paper, a general method is given for computing the chain polynomial of the truncated cubic graph with two different labels from the chain polynomial of the original labeled cubic graph by substitutions. As a result, we can obtain the Homfly polynomial of the double crossover 3-regular link which has relatively large number of crossings.


Subject(s)
Computational Biology/methods , DNA/chemistry , Models, Molecular , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL