Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Neurosci ; 59(8): 2118-2127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38282277

ABSTRACT

Early diagnosis is crucial to slowing the progression of Alzheimer's disease (AD), so it is urgent to find an effective diagnostic method for AD. This study intended to investigate whether the transfer learning approach of deep Q-network (DQN) could effectively distinguish AD patients using local metrics of resting-state functional magnetic resonance imaging (rs-fMRI) as features. This study included 1310 subjects from the Consortium for Reliability and Reproducibility (CoRR) and 50 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) GO/2. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF) and percent amplitude of fluctuation (PerAF) were extracted as features using the Power 264 atlas. Based on gender bias in AD, we searched for transferable similar parts between the CoRR feature matrix and the ADNI feature matrix, resulting in the CoRR similar feature matrix served as the source domain and the ADNI similar feature matrix served as the target domain. A DQN classifier was pre-trained in the source domain and transferred to the target domain. Finally, the transferred DQN classifier was used to classify AD and healthy controls (HC). A permutation test was performed. The DQN transfer learning achieved a classification accuracy of 86.66% (p < 0.01), recall of 83.33% and precision of 83.33%. The findings suggested that the transfer learning approach using DQN could be an effective way to distinguish AD from HC. It also revealed the potential value of local brain activity in AD clinical diagnosis.


Subject(s)
Alzheimer Disease , Brain , Humans , Male , Female , Alzheimer Disease/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Sexism , Machine Learning
2.
Opt Express ; 32(9): 15065-15077, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859166

ABSTRACT

Optical resonators made of 2D photonic crystal (PhC) slabs provide efficient ways to manipulate light at the nanoscale through small group-velocity modes with low radiation losses. The resonant modes in periodic photonic lattices are predominantly limited by nonleaky guided modes at the boundary of the Brillouin zone below the light cone. Here, we propose a mechanism for ultra-high Q resonators based on the bound states in the continuum (BICs) above the light cone that have zero-group velocity (ZGV) at an arbitrary Bloch wavevector. By means of the mode expansion method, the construction and evolution of avoided crossings and Friedrich-Wintgen BICs are theoretically investigated at the same time. By tuning geometric parameters of the PhC slab, the coalescence of eigenfrequencies for a pair of BIC and ZGV modes is achieved, indicating that the waveguide modes are confined longitudinally by small group-velocity propagation and transversely by BICs. Using this mechanism, we engineer ultra-high Q nanoscale resonators that can significantly suppress the radiative losses, despite the operating frequencies above the light cone and the momenta at the generic k point. Our work suggests that the designed devices possess potential applications in low-threshold lasers and enhanced nonlinear effects.

3.
Opt Express ; 32(10): 16809-16822, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858878

ABSTRACT

The X-ray sources for Compton radiography of ICF experiments are generated by using intense picosecond lasers to irradiate wire targets. The wire diameter must be designed thin enough, for example ∼ 10 µm in many published works, to comply a high spatial resolution. This results in a low laser-target interception, which limits the photon yield. We investigated a technique of coded-source radiography based on laser-driven annular sources via Monte Carlo and PIC simulations. The annular X-ray source is formed by laser irradiating tube target in which the effect of electron recirculation plays an important role. We proved that this technique has an increased spatial resolution and contrast than that using the Gaussian source produced by wire targets. Therefore, the diameter of the backlighter target can be significantly increased to uplift laser-target interception without compromising on spatial resolution. This contributes towards a reconciliation between the spatial resolution and photon yield for Compton radiography. The results predict the possibility of improving source photon yield by several times in future experiments.

4.
Invest New Drugs ; 42(1): 116-126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253746

ABSTRACT

Nivolumab can cause fatal myocarditis. We aimed to analyze the clinical characteristics of nivolumab-induced myocarditis and provide evidence for clinical diagnosis, treatment, and prevention. Studies involving nivolumab-induced myocarditis were identified in electronic databases from 2000 to 2023 for retrospective analysis. A total of 66 patients were included, with a median age of 68 years. The median onset time of myocarditis is 11.5 days. The main organs affected in persons presented with myocarditis are heart (100.0%) and skeletal muscle (22.7%). The main clinical manifestations are dyspnea (49.2%), fatigue (47.6%), and myalgias (25.4%). The levels of troponin, troponin T, troponin I, creatine kinase, creatine kinase myocardial band, creatine phosphokinase, C-reactive protein, brain natriuretic peptide, and N-terminal brain natriuretic peptide precursor were significantly increased. Histopathology often shows lymphocyte infiltration, myocardial necrosis, and fibrosis. Myocardial immunological parameters usually present positive. Cardiac imaging often suggests complete heart block, intraventricular conduction delay, arrhythmia, myocardial infarction, edema, left ventricular ejection fractions reduction, ventricular dysfunction, and other symptoms of myocarditis. Forty-two (63.6%) patients achieved remission within a median time of 8 days after discontinuation of nivolumab and treatment with systemic corticosteroids, immunoglobulins, plasmapheresis, and immunosuppressant. Thirty-five patients eventually died attributed to myocarditis (68.6%), cancer (20.0%), respiratory failure (5.7%), and other reasons (5.7%). Nivolumab-induced myocarditis should be comprehensively diagnosed based on clinical symptoms, histopathological manifestations, immunological parameters, and cardiac function imaging examinations. Nivolumab should be discontinued immediately, plasmapheresis and systemic corticosteroids combined with immunoglobulins or immunosuppressants may be an effective treatment.


Subject(s)
Antineoplastic Agents, Immunological , Myocarditis , Humans , Aged , Nivolumab/adverse effects , Myocarditis/chemically induced , Myocarditis/diagnosis , Myocarditis/therapy , Antineoplastic Agents, Immunological/adverse effects , Retrospective Studies , Natriuretic Peptide, Brain/adverse effects , Immunosuppressive Agents/therapeutic use , Adrenal Cortex Hormones/adverse effects , Creatine Kinase
5.
J Exp Bot ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655916

ABSTRACT

Endocytic recycling is an intracellular trafficking pathway that returns endocytosed molecules to the plasma membrane (PM) via the recycling endosome. This pathway plays a crucial role in remodeling PM composition and is thus essential for normal cellular homeostasis. In plants, endocytic recycling regulates the localization and abundance of receptors, transporters, and channels at the PM that are involved in many aspects of plant growth and development. Despite its importance, the recycling endosome and the underlying sorting mechanisms for cargo recycling in plants remain understudied in comparison to the endocytic recycling pathways of animal systems. In this review, we focus on the cumulative evidence suggesting the existence of endosomes decorated by regulators that contribute to recycling in plant cells. We summarize the chemical inhibitors used for analyzing cargo recycling and discuss recent advances in our understanding of how endocytic recycling participates in various plant cellular and physiological events.

6.
Eur J Nucl Med Mol Imaging ; 51(8): 2308-2319, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467921

ABSTRACT

PURPOSE: Chimeric antigen receptor (CAR) T-cell therapy has been confirmed to benefit patients with relapsed and/or refractory diffuse large B-cell lymphoma (DLBCL). It is important to provide precise and timely predictions of the efficacy and toxicity of CAR T-cell therapy. In this study, we evaluated the value of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) combining with clinical indices and laboratory indicators in predicting outcomes and toxicity of anti-CD19 CAR T-cell therapy for DLBCL patients. METHODS: Thirty-eight DLBCL patients who received CAR T-cell therapy and underwent [18F]FDG PET/CT within 3 months before (pre-infusion) and 1 month after CAR T-cell infusion (M1) were retrospectively reviewed and regularly followed up. Maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), clinical indices, and laboratory indicators were recorded at pre-infusion and M1 time points, and changes in these indices were calculated. Progression-free survival (PFS) and overall survival (OS) were as endpoints. Based on the multivariate Cox regression analysis, two predictive models for PFS and OS were developed and evaluated the efficiency. Pre-infusion indices were subjected to predict the grade of cytokine release syndrome (CRS) resulting from toxic reactions. RESULTS: For survival analysis at a median follow-up time of 18.2 months, patients with values of international prognostic index (IPI), SUVmax at M1, and TLG at M1 above their optimal thresholds had a shorter PFS (median PFS: 8.1 months [IPI ≥ 2] vs. 26.2 months [IPI < 2], P = 0.025; 3.1 months [SUVmax ≥ 5.69] vs. 26.8 months [SUVmax < 5.69], P < 0.001; and 3.1 months [TLG ≥ 23.79] vs. 26.8 months [TLG < 23.79], P < 0.001). In addition, patients with values of SUVmax at M1 and ∆SUVmax% above their optimal thresholds had a shorter OS (median OS: 12.6 months [SUVmax ≥ 15.93] vs. 'not reached' [SUVmax < 15.93], P < 0.001; 32.5 months [∆SUVmax% ≥ -46.76] vs. 'not reached' [∆SUVmax% < -46.76], P = 0.012). Two novel predictive models for PFS and OS were visualized using nomogram. The calibration analysis and the decision curves demonstrated good performance of the models. Spearman's rank correlation (rs) analysis revealed that the CRS grade correlated strongly with the pre-infusion SUVmax (rs = 0.806, P < 0.001) and moderately with the pre-infusion TLG (rs = 0.534, P < 0.001). Multinomial logistic regression analysis revealed that the pre-infusion value of SUVmax correlated with the risk of developing a higher grade of CRS (P < 0.001). CONCLUSION: In this group of DLBCL patients who underwent CAR T-cell therapy, SUVmax at M1, TLG at M1, and IPI were independent risk factors for PFS, and SUVmax at M1 and ∆SUVmax% for OS. Based on these indicators, two novel predictive models were established and verified the efficiency for evaluating PFS and OS. Moreover, pre-infusion SUVmax correlated with the severity of any subsequent CRS. We conclude that metabolic parameters measured using [18F]FDG PET/CT can identify DLBCL patients who will benefit most from CAR T-cell therapy, and the value before CAR T-cell infusion may predict its toxicity in advance.


Subject(s)
Fluorodeoxyglucose F18 , Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Positron Emission Tomography Computed Tomography , Humans , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Female , Middle Aged , Adult , Aged , Prognosis , Immunotherapy, Adoptive/adverse effects , Retrospective Studies , Young Adult , Receptors, Chimeric Antigen
7.
Eur J Nucl Med Mol Imaging ; 51(6): 1773-1785, 2024 May.
Article in English | MEDLINE | ID: mdl-38197954

ABSTRACT

PURPOSE: Imaging assessment of abdominopelvic tumor burden is crucial for debulking surgery decision in ovarian cancer patients. This study aims to compare the efficiency of [68Ga]Ga-FAPI-04 FAPI PET and MRI-DWI in the preoperative evaluation and its potential impact to debulking surgery decision. METHODS: Thirty-six patients with suspected/confirmed ovarian cancer were enrolled and underwent integrated [68Ga]Ga-FAPI-04 PET/MRI. Nineteen patients (15 stage III-IV and 4 I-II stage) who underwent debulking surgery were involved in the diagnostic efficiency analysis. The images of [68Ga]Ga-FAPI-04 PET and MRI-DWI were visually analyzed respectively. Immunohistochemistry on FAP was performed in metastatic lesions to investigate the radiological missing of [68Ga]Ga-FAPI-04 PET as well as its different performance in primary debulking surgery (PDS) and interval debulking surgery (IDS) patients. Potential imaging impact on management was also studied in 35 confirmed ovarian cancer patients. RESULTS: [68Ga]Ga-FAPI-04 PET displayed higher sensitivity (76.8% vs.59.9%), higher accuracy (84.9% vs. 80.7%), and lower missing rate (23.2% vs. 40.1%) than MRI-DWI in detecting abdominopelvic metastasis. The diagnostic superiority of [68Ga]Ga-FAPI-04 PET is more obvious in PDS patients but diminished in IDS patients. [68Ga]Ga-FAPI-04 PET outperformed MRI-DWI in 70.8% abdominopelvic regions (17/24), which contained seven key regions that impact the resectability and surgical complexity. MRI-DWI hold advantage in the peritoneal surface of the bladder and the central tendon of the diaphragm. Of the contradictory judgments between the two modalities (14.9%), [68Ga]Ga-FAPI-04 PET correctly identified more lesions, particularly in PDS patients (73.8%). In addition, FAP expression was independent of lesion size and decreased in IDS patients. [68Ga]Ga-FAPI-04 PET changed 42% of surgical planning that was previously based on MRI-DWI. CONCLUSION: [68Ga]Ga-FAPI-04 PET is more efficient in assisting debulking surgery in ovarian cancer patients than MRI-DWI. Integrated [68Ga]Ga-FAPI-04 PET/MR imaging is a potential method for planning debulking surgery in ovarian cancer patients.


Subject(s)
Cytoreduction Surgical Procedures , Ovarian Neoplasms , Positron-Emission Tomography , Quinolines , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Middle Aged , Positron-Emission Tomography/methods , Aged , Cytoreduction Surgical Procedures/methods , Adult , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Multimodal Imaging/methods , Surgery, Computer-Assisted/methods , Gallium Radioisotopes
8.
Langmuir ; 40(9): 4852-4859, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38382061

ABSTRACT

Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.

9.
Cereb Cortex ; 33(12): 7771-7782, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36935094

ABSTRACT

Poststroke aphasia is an acquired language disorder and has been proven to have adverse effects on patients' social skills and quality of life. However, there are some inconsistencies in the neuroimaging studies investigating poststroke aphasia from the perspective of regional alterations. A meta-analysis has been employed to examine the common pattern of abnormal regional spontaneous brain activity in poststroke aphasia in the current study. Specifically, the Anisotropic effect-size version of seed-based d mapping was utilized, and 237 poststroke aphasia patients and 242 healthy controls (HCs) from 12 resting-state functional magnetic resonance imaging studies using amplitude of low-frequency fluctuations (ALFF), fractional ALFF, or regional homogeneity were included. The results showed that compared with HCs, patients with poststroke aphasia demonstrated increased regional spontaneous brain activity in the right insula, right postcentral gyrus, left cerebellar lobule IX, left angular gyrus, right caudate nucleus, left parahippocampal gyrus, and right supplementary motor area, and decreased regional spontaneous brain activity in the left cerebellar lobule VI, left median cingulate and paracingulate gyri, right cerebellar crus I, and left supplementary motor area. The study could provide further evidence for pathophysiological mechanism of poststroke aphasia and help find targets for treatment.


Subject(s)
Aphasia , Quality of Life , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Aphasia/diagnostic imaging , Aphasia/etiology , Brain Mapping/methods
10.
Plant Cell Rep ; 43(4): 88, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461436

ABSTRACT

KEY MESSAGE: The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.


Subject(s)
Oryza , Plant Proteins , Plant Proteins/metabolism , Edible Grain/genetics , Seeds/genetics , Seeds/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant
11.
J Nanobiotechnology ; 22(1): 394, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965594

ABSTRACT

DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.


Subject(s)
DNA , Liver , Nanostructures , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Mice , Liver/metabolism , DNA/chemistry , Nanostructures/chemistry , Male , Tissue Distribution , Mice, Inbred C57BL , Apoptosis/drug effects , Oxidative Stress/drug effects
12.
Aging Ment Health ; 28(1): 36-44, 2024.
Article in English | MEDLINE | ID: mdl-37139965

ABSTRACT

OBJECTIVE: This study examined the moderating effect of intergenerational relationships on the association between Internet engagement and older Chinese adults' mental well-being and whether this relationship and the moderating role of intergenerational relationships differs by age. METHODS: We collected survey data from 1,162 participants aged 60 and older. Using the Satisfaction with Life Scale (SWLS) to measure life satisfaction, the Chinese version of the De Jong Gierveld Loneliness Scale to evaluate loneliness, and the Intergenerational Relationship Quality Scale for Aging Chinese Parents (IRQS-AP) to assess intergenerational relationship quality. Two-stage least squares regression with interaction terms was used to examine the moderating effect of intergenerational relationships on the association between Internet engagement and mental well-being in different age groups. RESULTS: Higher levels of Internet engagement were significantly associated with better life satisfaction and lower loneliness in older adults, particularly for the young-old. Furthermore, the positive association between Internet engagement and mental well-being was stronger for older adults with conflicted or detached intergenerational relationships. CONCLUSIONS: Encouraging and training older adults to use the Internet to shrink the digital divide, developing a sound Internet infrastructure, providing low-cost Internet services, particularly for the young-old with conflicted or detached intergenerational relationships, and the old-old.


Subject(s)
Loneliness , Mental Health , Humans , Middle Aged , Aged , Asian People , Surveys and Questionnaires , Internet
13.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542412

ABSTRACT

Thousands of lncRNAs have been found in zebrafish embryogenesis and adult tissues, but their identification and organogenesis-related functions have not yet been elucidated. In this study, high-throughput sequencing was performed at three different organogenesis stages of zebrafish embryos that are important for zebrafish muscle development. The three stages were 10 hpf (hours post fertilization) (T1), 24 hpf (T2), and 36 hpf (T3). LncRNA gas5, associated with muscle development, was screened out as the next research target by high-throughput sequencing and qPCR validation. The spatiotemporal expression of lncRNA gas5 in zebrafish embryonic muscle development was studied through qPCR and in situ hybridization, and functional analysis was conducted using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9, CRISPR/Cas9). The results were as follows: (1) A total of 1486 differentially expressed lncRNAs were identified between T2 and T1, among which 843 lncRNAs were upregulated and 643 were downregulated. The comparison with T3 and T2 resulted in 844 differentially expressed lncRNAs, among which 482 lncRNAs were upregulated and 362 lncRNAs were downregulated. A total of 2137 differentially expressed lncRNAs were found between T3 and T1, among which 1148 lncRNAs were upregulated and 989 lncRNAs were downregulated, including lncRNA gas5, which was selected as the target gene. (2) The results of spatiotemporal expression analysis showed that lncRNA gas5 was expressed in almost all detected embryos of different developmental stages (0, 2, 6, 10, 16, 24, 36, 48, 72, 96 hpf) and detected tissues of adult zebrafish. (3) After lncRNA gas5 knockout using CRISPR/Cas9 technology, the expression levels of detected genes related to muscle development and adjacent to lncRNA gas5 were more highly affected in the knockout group compared with the control group, suggesting that lncRNA gas5 may play a role in embryonic muscle development in zebrafish. (4) The results of the expression of the skeletal myogenesis marker myod showed that the expression of myod in myotomes was abnormal, suggesting that skeletal myogenesis was affected after lncRNA gas5 knockout. The results of this study provide an experimental basis for further studies on the role of lncRNA gas5 in the embryonic skeletal muscle development of zebrafish.


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Zebrafish/metabolism , Organogenesis/genetics , Embryonic Development/genetics , Muscle Development/genetics
14.
Angew Chem Int Ed Engl ; 63(5): e202315148, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38078596

ABSTRACT

Tracking the trajectory of hydrogen intermediates during hydrogen electro-catalysis is beneficial for designing synergetic multi-component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization-driven electrochemical hydrogenation process from Pd@Pt to PdHx @Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate-determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx @Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro-catalysis.

15.
Immunology ; 170(4): 495-509, 2023 12.
Article in English | MEDLINE | ID: mdl-37575027

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease associated with CD4+ Th1 and Th17 cell immune responses. Tumour necrosis factor-associated factor 5 (TRAF5) deficiency has been shown to aggravate DSS-induced colitis. However, the potential role of TRAF5 in regulating CD4+ T cell immune responses in the pathogenesis of IBD remains unclear. TRAF5-/- CD4+ CD45RBhigh T cells and WT CD4+ CD45RBhigh T cells were transferred to Rag2-/- mice via intravenous (i.v.) tail injection, respectively, to establish a chronic colitis model. Adeno-associated virus (AAV)-mediated gene knockout technique was used to knock out runt-associated transcription factor 1 (Runx1) expression in vivo. Specific cytokines of Th1 and Th17 cells were detected by quantitative RT-PCR, immunohistochemistry, ELISA, and flow cytometry. In T-cell transfer colitis mice, the Rag2-/- mice reconstituted with TRAF5-/- CD4+ CD45RBhigh T cells showed more severe intestinal inflammation than the WT control group, which was characterised by increased expression of INF-γ, TNF-α, IL-17a. Furthermore, we found that the INF-γ+ CD4+ , IL17a+ CD4+ , and INF-γ+ IL17a+ CD4+ T cells in the intestinal mucosa of Rag2-/- mice reconstituted with TRAF5-/- CD4+ CD45RBhigh T cells were significantly higher than those of the WT control group by flow cytometry. Mechanistically, knockout Runx1 inhibited the differentiation of TRAF5-/- CD4+ T cells into Th1 and Th17 cells in the intestinal mucosa of T-cell transfer colitis mice. TRAF5 regulates Th1 and Th17 cell differentiation and immune response through Runx1 to participate in the pathogenesis of colitis. Thus targeting TRAF5 in CD4+ T cells may be a novel treatment for IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Th17 Cells , TNF Receptor-Associated Factor 5/metabolism , Intestinal Mucosa , Immunity , Th1 Cells , Mice, Inbred C57BL , CD4-Positive T-Lymphocytes , Mice, Knockout , Disease Models, Animal , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism
16.
J Am Chem Soc ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36734666

ABSTRACT

Heteroepitaxial core-shell structure is conducive to combining the advantages of the epilayer and the substrate, creating a novel multifunctionality for catalysis application. Herein, we report a pseudomorphic-Pt atomic layer (PmPt) epitaxially growing on an IrPd-core matrix (PmPt@IrPd/C) as an efficient and stable catalyst for alkaline hydrogen oxidation reaction that exhibits ∼29.2 times more mass activity enhancement than that of benchmark Pt/C. The PmPt@IrPd/C catalyst also gives rise to ∼25.0 times more enhancement than Pt/C during a 50,000-cycle accelerated stability test. This robust stability originates from the resistance to carbon corrosion owing to the stronger H2O interaction instead of carbon oxide (COx) poison species, and the modulated hydroxyl (OH*) adsorption could inhibit the OH* species from shuffling the surface Pt atoms away from the substrate. Moreover, the anion-exchange membrane fuel cells assembled by PmPt@IrPd/C with an ultralow Pt loading of 0.009 mgPt cm-2 in the anode can deliver a power density of 1.27 W cm-2.

17.
Hum Brain Mapp ; 44(3): 1094-1104, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36346215

ABSTRACT

Previous studies have explored resting-state functional connectivity (rs-FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency-specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age-matched and sex-matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed-based FC analyses in the conventional, slow-5, and slow-4 frequency bands at each site. Image-based meta-analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta-analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow-5 frequency band instead of the conventional and slow-4 frequency bands. The deep learning results showed that, compared with the conventional and slow-4 frequency bands, the slow-5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD.


Subject(s)
Autism Spectrum Disorder , Deep Learning , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain Mapping/methods , Neural Pathways/diagnostic imaging , Brain , Magnetic Resonance Imaging/methods , Amygdala/diagnostic imaging
18.
J Neurosci Res ; 101(8): 1205-1223, 2023 08.
Article in English | MEDLINE | ID: mdl-37001980

ABSTRACT

Many resting-state functional magnetic resonance imaging (rs-fMRI) studies have explored abnormal regional spontaneous brain activity in migraine. However, these results are inconsistent. To identify the consistent regions with abnormal neural activity, we meta-analyzed these studies. We gathered whole-brain rs-fMRI studies measuring differences in the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), or regional homogeneity (ReHo) methods. Then, we performed a voxel-wise meta-analysis to identify consistent abnormal neural activity in migraine by anisotropic effect size seed-based d mapping (AES-SDM). To confirm the AES-SDM meta-analysis results, we conducted two meta-analyses: activation likelihood estimation (ALE) and multi-level kernel density analysis (MKDA). We found that migraine showed increased regional neural activities in the bilateral postcentral gyrus (PoCG), left hippocampus (HIP.L), right pons, left superior frontal gyrus (SFG.L), triangular part of right inferior frontal gyrus (IFGtriang.R), right middle frontal gyrus (MFG.R), and left precentral gyrus (PreCG.L) and decreased regional intrinsic brain activities were exhibited in the right angular gyrus (ANG.R), left superior occipital gyrus (SOG.L), right lingual gyrus (LING.R). Moreover, the meta-analysis of ALE further validated the abnormal neural activities in the PoCG, right pons, ANG.R, and HIP. Meta-regression demonstrated that headache intensity was positively associated with the abnormal activities in the HIP.L, ANG.R, and LING.R. These findings suggest that migraine is associated with abnormal spontaneous brain activities of some pain-related regions, which may contribute to a deeper understanding of the neural mechanism of migraine.


Subject(s)
Migraine Disorders , Motor Cortex , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Migraine Disorders/diagnostic imaging , Parietal Lobe , Magnetic Resonance Imaging/methods
19.
Eur J Nucl Med Mol Imaging ; 50(10): 3062-3071, 2023 08.
Article in English | MEDLINE | ID: mdl-37191681

ABSTRACT

PURPOSE: Positron emission tomography (PET) using [18F]-PFPN, a melanin-targeted imaging tracer, has excellent diagnostic performance in patients with melanoma. This study aimed to investigate its value in prognostication and determine predictors of progression-free survival (PFS) and overall survival (OS). METHODS: We reviewed melanoma patients who underwent [18F]-PFPN and [18F]-FDG PET from February 2021 to July 2022. Clinical characteristics, follow-up data, and the following [18F]-PFPN PET parameters were recorded: maximum standardized uptake value (SUVmax), whole-body melanotic tumoral volume (WBMTV), and whole-body total lesion melanin (WBTLM). Receiver operating characteristic (ROC), Kaplan-Meier and Cox regression analyses were performed. RESULTS: Seventy-six patients (47 men and 29 women; mean age, 57.99 ± 10.72 years) were included for analysis. Median follow-up was 12.0 months (range: 1-22 months). Eighteen patients died and 38 experienced progression. Median OS was 17.60 months (95% confidence interval, 15.89-19.31). In the ROC analysis, [18F]-PFPN PET parameters were superior to those of [18F]-FDG PET in prognosticating death and disease progression. PFS and OS were significantly better in patients with lower SUVmax, WBMTV, and WBTLM on [18F]-PFPN PET (log-rank, P < 0.05). In the univariate analyses, distant metastasis, SUVmax, WBMTV, and WBTLM were significantly associated with cumulative incidence of PFS and OS (P < 0.05). In the multivariate analysis, SUVmax was an independent predictor of PFS and OS. CONCLUSIONS: [18F]-PFPN PET has a role in prognostication of melanoma patients. Patients with higher [18F]-PFPN SUVmax have worse prognosis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT05645484. Registered 9 December, 2022, https://clinicaltrials.gov/ct2/show/NCT05645484?cond=The+Prognostic+Value+of+18F-PFPN+PET+Imaging+in+Patients+With+Malignant+Melanoma&draw=2&rank=1.


Subject(s)
Melanins , Melanoma , Aged , Female , Humans , Male , Middle Aged , Fluorodeoxyglucose F18 , Melanoma/diagnostic imaging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prognosis , Retrospective Studies
20.
Psychol Med ; : 1-10, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712399

ABSTRACT

The COVID-19 pandemic has had a profound impact on the mental health of healthcare workers (HCWs). We aimed to identify the factors associated with depression among HCWs during the pandemic. We conducted literature search using eight electronic databases up to July 27 2022. Observational studies with more than 200 participants investigating correlates of depression in HCWs after COVID-19 outbreak were included. We used fixed- and random-effects models to pool odds ratios (ORs) across studies, and Cochran's chi-squared test and I 2 statistics to assess study heterogeneity. Publication bias was evaluated by funnel plots. Thirty-five studies involving 44,362 HCWs met the inclusion criteria. Female (OR=1.50, 95% CI [1.23,1.84]), single (OR=1.36, 95% CI [1.21,1.54]), nurse (OR=1.69, 95% CI [1.28,2.25]), history of mental diseases (OR=2.53, 95% CI [1.78,3.58]), frontline (OR=1.79, 95% CI [1.38,2.32]), health anxiety due to COVID-19 (OR=1.88, 95% CI [1.29,2.76]), working in isolation wards (OR=1.98, 95% CI [1.38,2.84]), and insufficient personal protective equipment (OR=1.49, 95% CI [1.33,1.67]) were associated with increased risk of depression. Instead, HCWs with a positive professional prospect (OR=0.34, 95% CI [0.24,0.49]) were less likely to be depressed. This meta-analysis provides up-to-date evidence on the factors linked to depression among HCWs during the COVID-19 pandemic. Given the persistent threats posed by COVID-19, early screening is crucial for the intervention and prevention of depression in HCWs.

SELECTION OF CITATIONS
SEARCH DETAIL