Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 31(20): 3558-3565, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35717579

ABSTRACT

Although multiple common susceptibility loci for lung cancer (LC) have been identified by genome-wide association studies, they can explain only a small portion of heritability. The etiological contribution of rare deleterious variants (RDVs) to LC risk is not fully characterized and may account for part of the missing heritability. Here, we sequenced the whole exomes of 2777 participants from the Environment and Genetics in Lung cancer Etiology study, a homogenous population including 1461 LC cases and 1316 controls. In single-variant analyses, we identified a new RDV, rs77187983 [EHBP1, odds ratio (OR) = 3.13, 95% confidence interval (CI) = 1.34-7.30, P = 0.008] and replicated two previously reported RDVs, rs11571833 (BRCA2, OR = 2.18; 95% CI = 1.25-3.81, P = 0.006) and rs752672077 (MPZL2, OR = 3.70, 95% CI = 1.04-13.15, P = 0.044). In gene-based analyses, we confirmed BRCA2 (P = 0.007) and ATM (P = 0.014) associations with LC risk and identified TRIB3 (P = 0.009), involved in maintaining genome stability and DNA repair, as a new candidate susceptibility gene. Furthermore, cases were enriched with RDVs in homologous recombination repair [carrier frequency (CF) = 22.9% versus 19.5%, P = 0.017] and Fanconi anemia (CF = 12.5% versus 10.2%, P = 0.036) pathways. Our results were not significant after multiple testing corrections but were enriched in cases versus controls from large scale public biobank resources, including The Cancer Genome Atlas, FinnGen and UK Biobank. Our study identifies novel candidate genes and highlights the importance of RDVs in DNA repair-related genes for LC susceptibility. These findings improve our understanding of LC heritability and may contribute to the development of risk stratification and prevention strategies.


Subject(s)
Genome-Wide Association Study , Lung Neoplasms , DNA Repair/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Germ Cells , Humans , Lung Neoplasms/genetics
2.
Anal Chem ; 96(5): 1906-1912, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38251936

ABSTRACT

Salivary d-alanine (d-Ala) and d-proline (d-Pro) are of concern for their potential in the noninvasive diagnosis of gastric cancer (GC). Most reports have succeeded in determining the total concentration of d-Ala and d-Pro. However, for personalized diagnosis and better elucidation of the underlying specific correlation of d-Ala (or d-Pro) with GC, it is desirable to determine the specific concentration of d-Ala or d-Pro. Herein, we propose an enantiomer-specific tandem assay of d-Ala based on the colorimetric reaction between 2,4-dinitrophenylhydrazine and pyruvic acid generated from the deamination of d-Ala catalyzed by d-amino acid oxidase, which is easily distinguished from l-form amino acids, d-Pro, and many other species. A linear concentration range is established from 20 to 400 µmol/L with a limit of detection of 1.01 µmol/L. Real saliva sample tests reveal that the levels of d-Ala in GC cases are remarkably higher than those in healthy individuals, which offers a simple and low-cost strategy for GC diagnosis. Simultaneously, the total concentrations of d-Ala and d-Pro in saliva are determined. Hence, the concentration of d-Pro and the proportion of d-Ala could be calculated, which further provides more molecule- and individual-specific information. This research may offer a convenient method for noninvasive diagnosis of GC and pave a new route to explore the potentials of rare d-form amino acids in disease diagnosis and treatment.


Subject(s)
Alanine , Stomach Neoplasms , Humans , Alanine/chemistry , Stomach Neoplasms/diagnosis , Colorimetry , Amino Acids , Proline
3.
Small ; 20(27): e2311219, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38263800

ABSTRACT

The development of thermally stable separators is a promising approach to address the safety issues of lithium-ion batteries (LIBs) owing to the serious shrinkage of commercial polyolefin separators at elevated temperatures. However, achieving controlled nanopores with a uniform size distribution in thermostable polymeric separators and high electrochemical performance is still a great challenge. In this study, nanoporous polyimide (PI) membranes with excellent thermal stability as high-safety separators is developed for LIBs using a superspreading strategy. The superspreading of polyamic acid solutions enables the generation of thin and uniform liquid layers, facilitating the formation of thin PI membranes with controllable and uniform nanopores with narrow size distribution ranging from 121 ± 5 nm to 86 ± 6 nm. Such nanoporous PI membranes display excellent structural stability at elevated temperatures up to 300 °C for at least 1 h. LIBs assembled with nanoporous PI membranes as separators show high specific capacity and Coulombic efficiency and can work normally after transient treatment at a high temperature (150 °C for 20 min) and high ambient temperature, indicating their promising application as high-safety separators for rechargeable batteries.

4.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925513

ABSTRACT

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.

5.
Pharmacol Res ; 199: 106957, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820856

ABSTRACT

SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Coronary Artery Disease/metabolism , Reperfusion , Autophagy , Apoptosis
6.
Microb Cell Fact ; 23(1): 153, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796416

ABSTRACT

BACKGROUND: Dihydroxyacetone (DHA) stands as a crucial chemical material extensively utilized in the cosmetics industry. DHA production through the dephosphorylation of dihydroxyacetone phosphate, an intermediate product of the glycolysis pathway in Escherichia coli, presents a prospective alternative for industrial production. However, insights into the pivotal enzyme, dihydroxyacetone phosphate dephosphorylase (HdpA), remain limited for informed engineering. Consequently, the development of an efficient tool for high-throughput screening of HdpA hypermutants becomes imperative. RESULTS: This study introduces a methylglyoxal biosensor, based on the formaldehyde-responding regulator FrmR, for the selection of HdpA. Initial modifications involved the insertion of the FrmR binding site upstream of the -35 region and into the spacer region between the -10 and -35 regions of the constitutive promoter J23110. Although the hybrid promoter retained constitutive expression, expression of FrmR led to complete repression. The addition of 350 µM methylglyoxal promptly alleviated FrmR inhibition, enhancing promoter activity by more than 40-fold. The methylglyoxal biosensor system exhibited a gradual increase in fluorescence intensity with methylglyoxal concentrations ranging from 10 to 500 µM. Notably, the biosensor system responded to methylglyoxal spontaneously converted from added DHA, facilitating the separation of DHA producing and non-producing strains through flow cytometry sorting. Subsequently, the methylglyoxal biosensor was successfully applied to screen a library of HdpA mutants, identifying two strains harboring specific mutants 267G > T and D110G/G151C that showed improved DHA production by 68% and 114%, respectively. Expressing of these two HdpA mutants directly in a DHA-producing strain also increased DHA production from 1.45 to 1.92 and 2.29 g/L, respectively, demonstrating the enhanced enzyme properties of the HdpA mutants. CONCLUSIONS: The methylglyoxal biosensor offers a novel strategy for constructing genetically encoded biosensors and serves as a robust platform for indirectly determining DHA levels by responding to methylglyoxal. This property enables efficiently screening of HdpA hypermutants to enhance DHA production.


Subject(s)
Biosensing Techniques , Dihydroxyacetone , Escherichia coli , Pyruvaldehyde , Pyruvaldehyde/metabolism , Biosensing Techniques/methods , Dihydroxyacetone/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Promoter Regions, Genetic , Metabolic Engineering/methods , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
7.
Bioorg Chem ; 147: 107416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705107

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) is a debilitating condition characterized by the rupture of cerebral blood vessels, resulting in profound neurological deficits. A significant challenge in the treatment of ICH lies in the brain's limited capacity to regenerate damaged blood vessels. This study explores the potential synergistic effects of Ginsenoside Rh2 and Chrysophanol in promoting angiogenesis following ICH in a rat model. METHODS: Network pharmacology was employed to predict the potential targets and pathways of Ginsenoside Rh2 and Chrysophanol for ICH treatment. Molecular docking was utilized to assess the binding affinity between these compounds and their respective targets. Experimental ICH was induced in male Sprague-Dawley rats through stereotactic injection of type VII collagenase into the right caudate putamen (CPu). The study encompassed various methodologies, including administration protocols, assessments of neurological function, magnetic resonance imaging, histological examination, observation of brain tissue ultrastructure, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunofluorescence staining, Western blot analysis, and statistical analyses. RESULTS: Network pharmacology analysis indicated that Ginsenoside Rh2 and Chrysophanol may exert their therapeutic effects in ICH by promoting angiogenesis. Results from animal experiments revealed that rats treated with Ginsenoside Rh2 and Chrysophanol exhibited significantly improved neurological function, reduced hematoma volume, and diminished pathological injury compared to the Model group. Immunofluorescence analysis demonstrated enhanced expression of vascular endothelial growth factor receptor 2 (VEGFR2) and CD31, signifying augmented angiogenesis in the peri-hematomal region following combination therapy. Importantly, the addition of a VEGFR2 inhibitor reversed the increased expression of VEGFR2 and CD31. Furthermore, Western blot analysis revealed upregulated expression of angiogenesis-related factors, including VEGFR2, SRC, AKT1, MAPK1, and MAPK14, in the combination therapy group, but this effect was abrogated upon VEGFR2 inhibitor administration. CONCLUSION: The synergistic effect of Ginsenoside Rh2 and Chrysophanol demonstrated a notable protective impact on ICH injury in rats, specifically attributed to their facilitation of angiogenesis. Consequently, this research offers a foundation for the utilization of Ginsenosides Rh2 and Chrysophanol in medical settings and offers direction for the advancement of novel pharmaceuticals for the clinical management of ICH.


Subject(s)
Cerebral Hemorrhage , Ginsenosides , Rats, Sprague-Dawley , Animals , Ginsenosides/pharmacology , Ginsenosides/chemistry , Male , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Rats , Anthraquinones/pharmacology , Anthraquinones/chemistry , Molecular Docking Simulation , Molecular Structure , Dose-Response Relationship, Drug , Drug Synergism , Structure-Activity Relationship , Angiogenesis
8.
Chem Biodivers ; 21(4): e202400290, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38389159

ABSTRACT

Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.


Subject(s)
Tumor Necrosis Factor-alpha , alpha7 Nicotinic Acetylcholine Receptor , Humans , Up-Regulation , Lipopolysaccharides/pharmacology , Neuroimmunomodulation , Coumarins/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy
9.
Anal Chem ; 95(38): 14365-14374, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37712586

ABSTRACT

Though many elegant laccase mimics have emerged, these mimics generally have no substrate selectivity as well as low activity, making it difficult to fulfill the demand for monitoring in physiological conditions. Herein, inspired by the Cu-N ligand structure in the active site of natural laccase, we revealed that a carbon nanomaterial with atomically dispersed Cu and Zn atoms (CuZn-N/C) and a well-defined ligand structure could function as an effective laccase mimic for selectively catalyzing epinephrine (EP) oxidation. Catalytic activity of the CuZn-N/C nanozyme was superior to those of Cu-N/C and Zn-N/C and featured a Km value nearly 3-fold lower than that of natural laccase, which indicated that CuZn-N/C has a better affinity for EP. Density functional theory (DFT) revealed the mechanism of the superior catalytic ability of dual-metal CuZn-N/C as follows: (1) the exact distance of the two metal atoms in the CuZn-N/C catalyst makes it suitable for adsorption of the EP molecule, and the CuZn-N/C catalyst can offer the second hydrogen bond that stabilizes the adsorption; (2) molecular orbitals and density of states indicate that the strong interaction between the EP molecule and CuZn-N/C is important for EP catalytic oxidization. Furthermore, a sensitive and selective online optical detection platform (OODP) is constructed for determining EP with a low limit of detection (LOD) of 0.235 µM and a linear range of 0.2-20 µM. The system allows real-time measurement of EP release in the rat brain in vivo following ischemia with dexmedetomidine administration. This work not only provides an idea of designing efficient laccase mimics but also builds a promising chemical platform for better understanding EP-related drug action for ischemic cerebrovascular illnesses and opens up possibilities to explore brain function.


Subject(s)
Brain , Laccase , Animals , Rats , Ligands , Substrate Specificity , Epinephrine
10.
Biochem Biophys Res Commun ; 642: 118-127, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36566563

ABSTRACT

PURPOSE: Acute lung injury (ALI) is a fatal acute inflammatory illness with restricted therapeutic choices clinically. Piperlongumine (PL) is recognized as an alkaloid separated from Piper longum L, which was suggested to exhibit multiple pharmacological activities (e.g., anti-inflammatory activity). However, the effects of PL on LPS-triggered ALI and its anti-inflammatory target remain unclear. This paper intended to assess the roles of PL in LPS-triggered ALI, as well as its underlying mechanism and target. METHODS: In vivo, ALI was induced by intratracheal injection of LPS to evaluate protective effects of PL and assessed by the changes of histopathological. In vitro, the anti-inflammatory activity and mechanism of PL were investigated by ELISA, RT-qPCR, transcription factor enrichment analysis, Western blotting and Immunofluorescence assay. The binding affinity of PL to MD2 was analyzed using computer docking, surface plasmon resonance, ELISA and immunoprecipitation assay. RESULTS: It was reported here that PL treatment alleviated LPS-induced pulmonary damage, inflammatory cells infiltration and inflammatory response in mice. In culture cells, PCR array showed that PL significantly inhibited LPS-induced inflammatory cytokines, chemokines, and type I IFNs genetic expression, along with the inhibition of TAK1 and TBK1 pathway. It is noteworthy that PL is capable of straightly binding to MD2 and inhibiting MD2/TLR4 complex formation and TLR4 dimerization. CONCLUSIONS: As revealed from this study, PL directly binding to MD2 to block cytokines expression by inhibiting the activation of TAK1 and TBK1 pathway, which then exerted its pulmonary protective activity. Accordingly, PL may act as an underlying candidate for treating LPS-triggered ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/pathology , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , NF-kappa B/metabolism
11.
Mol Carcinog ; 62(2): 224-235, 2023 02.
Article in English | MEDLINE | ID: mdl-36250641

ABSTRACT

Epidemiological investigations implied that mitochondrial DNA copy number (mtDNAcn) variations could trigger predisposition to multiple cancers, but evidence regarding gastrointestinal cancers (GICs) was still uncertain. We conducted a case-cohort study within the prospective Dongfeng-Tongji cohort, including incident cases of colorectal cancer (CRC, n = 278), gastric cancer (GC, n = 138), and esophageal cancer (EC, n = 72) as well as a random subcohort (n = 1173), who were followed up from baseline to the end of 2018. We determined baseline blood mtDNAcn and associations of mtDNAcn with the GICs risks were estimated by using weighted Cox proportional hazards models. Significant U-shaped associations were observed between mtDNAcn and GICs risks. Compared to subjects within the second quartile (Q2) mtDNAcn subgroup, those within the 1st (Q1), 3rd (Q3), and 4th (Q4) quartile subgroups showed increased risks of CRC (hazard ratio [HR] [95% confidence interval, CI] = 2.27 [1.47-3.52], 1.65 [1.04-2.62], and 2.81 [1.85-4.28], respectively) and total GICs (HR [95%CI] = 1.84 [1.30-2.60], 1.47 [1.03-2.10], and 2.51 [1.82-3.47], respectively], and those within Q4 subgroup presented elevated GC and EC risks (HR [95% CI] = 2.16 [1.31-3.54] and 2.38 [1.13-5.02], respectively). Similar associations of mtDNAcn with CRC and total GICs risks remained in stratified analyzes by age, gender, smoking, and drinking status. This prospective case-cohort study showed U-shaped associations between mtDNAcn and GICs risks, but further research works are needed to uncover underlying biological mechanisms.


Subject(s)
DNA, Mitochondrial , Gastrointestinal Neoplasms , Humans , DNA, Mitochondrial/genetics , DNA Copy Number Variations , Cohort Studies , Mitochondria/genetics , Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/genetics
12.
BMC Cancer ; 23(1): 165, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36803318

ABSTRACT

OBJECTIVE: To identify the main risk factors for metachronous metastatic nasopharyngeal carcinoma (NPC) in different periods after radiotherapy and estimate the weight of various factors in the early or late metachronous metastasis (EMM/LMM) groups. METHODS: This retrospective registry consists of 4434 patients with newly diagnosed NPC. Cox regression analysis was used to assess the independent significance of various risk factors. The Interactive Risk Attributable Program (IRAP) was used to calculate the attributable risks (ARs) for metastatic patients during different periods. RESULTS: Among 514 metastatic patients, 346 (67.32%) patients diagnosed with metastasis within 2 years after treatment were classified into the EMM group, while other 168 patients were classified into the LMM group. The ARs of T-stage, N-stage, pre-Epstein-Barr virus (EBV) DNA, post-EBV DNA, age, sex, pre-neutrophil-to-lymphocyte ratio, pre-platelet-to-lymphocyte ratio, pre-hemoglobin (HB), and post-HB were 20.19, 67.25, 2.81, 14.28, 18.50, - 11.17%, 14.54, 9.60, 3.74% and - 9.79%, respectively, in the EMM group. In the LMM group, the corresponding ARs were 3.68, 49.11, - 18.04%, 2.19, 6.11, 0.36, 4.62, 19.77, 9.57 and 7.76%, respectively. After multivariable adjustment, the total AR for tumor-related factors was 78.19%, and that for patient-related factors was 26.07% in the EMM group. In the LMM group, the total AR of tumor-related factors was 43.85%, while the weights of patient-related factors was 39.97%. In addition, except for these identified tumor- and patient-related factors, other unevaluated factors played a more important role in patients with late metastasis, with the weight increasing by 15.77%, from 17.76% in the EMM group to 33.53% in the LMM group. CONCLUSION: Most metachronous metastatic NPC cases occurred in the first 2 years after treatment. Early metastasis was mainly affected by tumor-related factors, which accounted for a declining percentage in the LMM group.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Retrospective Studies , Herpesvirus 4, Human/genetics , Risk Factors , Prognosis , DNA, Viral
13.
Am J Obstet Gynecol ; 228(2): 224.e1-224.e16, 2023 02.
Article in English | MEDLINE | ID: mdl-35952840

ABSTRACT

BACKGROUND: Prenatal omega-3 fatty acid supplementation, particularly docosahexaenoic acid and eicosapentaenoic acid, has been associated with greater birthweight in clinical trials; however, its effect on fetal growth throughout gestation is unknown. OBJECTIVE: This study aimed to examine the association between first-trimester docosahexaenoic acid and eicosapentaenoic acid supplementation and growth trajectories of estimated fetal weight and specific fetal biometrics measured longitudinally from the second trimester of pregnancy to delivery. STUDY DESIGN: In a multisite, prospective cohort of racially diverse, low-risk pregnant women, we used secondary data analysis to examine fetal growth trajectories in relation to self-reported (yes or no) first-trimester docosahexaenoic acid and eicosapentaenoic acid supplementation. Fetal ultrasonographic measurements, including abdominal circumference, biparietal diameter, femur length, head circumference, and humerus length, were measured at enrollment (8-13 weeks) and up to 5 follow-up visits. Estimated fetal weight and head circumference-to-abdominal circumference ratio (a measure of growth symmetry) were calculated. Fetal growth trajectories were modeled for each measure using a linear mixed model with cubic splines. If significant differences in fetal growth trajectories between groups were observed (global P<.05), weekly comparisons were performed to determine when in gestation these differences emerged. Analyses were adjusted for maternal sociodemographics, parity, infant sex, total energy consumption, and diet quality score. All analyses were repeated using dietary docosahexaenoic acid and eicosapentaenoic acid intake, dichotomized at the recommended cutoff for pregnant and lactating women (≥0.25 vs <0.25 g/d), among women who did not report supplement intake in the first trimester of pregnancy were repeated. RESULTS: Among 1535 women, 143 (9%) reported docosahexaenoic acid and eicosapentaenoic acid supplementation in the first trimester of pregnancy. Overall, first-trimester docosahexaenoic acid and eicosapentaenoic acid supplementation was associated with statistically significant differences (P-value <.05) in fetal growth trajectories during pregnancy. Specifically, estimated fetal weight was larger among women with docosahexaenoic acid and eicosapentaenoic acid supplementation than among those without supplementation (global P=.028) with significant weekly differences in median estimated fetal weight most apparent between 38 to 41 weeks of gestation (median estimated fetal weight difference at 40 weeks of gestation, 114 g). Differences in fetal growth trajectories for abdominal circumference (P=.003), head circumference (P=.003), and head circumference-to-abdominal circumference ratio (P=.0004) were also identified by supplementation status. In weekly comparisons, docosahexaenoic acid and eicosapentaenoic acid supplement use was associated with larger median abdominal circumference (changed from 2 to 9 mm) in midpregnancy onward (19 to 41 weeks), larger median head circumference between 30 to 33 weeks of gestation, and smaller median head circumference-to-abdominal circumference ratio in the second and third trimesters of pregnancy. There was no specific weekly difference in fetal femur length or humerus length by docosahexaenoic acid and eicosapentaenoic acid supplementation. First-trimester dietary sources of docosahexaenoic acid and eicosapentaenoic acid among women with no first-trimester docosahexaenoic acid and eicosapentaenoic acid supplementation (n=1392) were associated with differences in fetal biparietal diameter (P=.043), but not other metrics of fetal growth. At the recommended dietary docosahexaenoic acid and eicosapentaenoic acid levels compared with below-recommended levels, biparietal diameter was larger between 38 to 41 weeks of gestation. CONCLUSION: In this racially diverse pregnancy cohort, first-trimester docosahexaenoic acid and eicosapentaenoic acid supplementation was associated with significant increases in fetal growth, specifically greater estimated fetal abdominal circumference in the second and third trimesters of pregnancy.


Subject(s)
Fatty Acids, Omega-3 , Pregnancy , Female , Humans , Fetal Weight , Pregnancy Trimester, First , Docosahexaenoic Acids , Eicosapentaenoic Acid , Prospective Studies , Lactation , Fetal Development , Dietary Supplements , Ultrasonography, Prenatal
14.
EMBO Rep ; 22(8): e51780, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34184805

ABSTRACT

Snail is a dedicated transcriptional repressor and acts as a master inducer of EMT and metastasis, yet the underlying signaling cascades triggered by Snail still remain elusive. Here, we report that Snail promotes colorectal cancer (CRC) migration by preventing non-coding RNA LOC113230-mediated degradation of argininosuccinate synthase 1 (ASS1). LOC113230 is a novel Snail target gene, and Snail binds to the functional E-boxes within its proximal promoter to repress its expression in response to TGF-ß induction. Ectopic expression of LOC113230 potently suppresses CRC cell growth, migration, and lung metastasis in xenograft experiments. Mechanistically, LOC113230 acts as a scaffold to facilitate recruiting LRPPRC and the TRAF2 E3 ubiquitin ligase to ASS1, resulting in enhanced ubiquitination and degradation of ASS1 and decreased arginine synthesis. Moreover, elevated ASS1 expression is essential for CRC growth and migration. Collectively, these findings suggest that TGF-ß and Snail promote arginine synthesis via inhibiting LOC113230-mediated LRPPRC/TRAF2/ASS1 complex assembly and this complex can serve as potential target for the development of new therapeutic approaches to treat CRC.


Subject(s)
Argininosuccinate Synthase , Epithelial-Mesenchymal Transition , Arginine , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Ubiquitination
15.
AIDS Care ; 35(9): 1420-1427, 2023 09.
Article in English | MEDLINE | ID: mdl-34581229

ABSTRACT

Few large studies evaluated the effects of time trends on virologic suppression in people living with HIV/AIDS (PLWHA) in China. To address this, An retrospective observational longitudinal study was conducted. We examined annual trends in the rate of virologic suppression, the viral load at the time of virologic suppression, and other determinants of virologic suppression in Zhejiang Province, China in PLWHA between January 2013 and July 2018. Patients who received a treatment regimen for at least 24 weeks were included. Virologic suppression was defined as VL ≤50 copies/mL. Generalized estimating equation logistic regression models were used to adjust for covariates. We included 16,265 patients with 45023 tests. The proportion of patients who experienced an unsuccessful virologic outcome decreased continuously throughout the observation period (18.14% to 6.64%). Time was significantly negatively associated with detectable VL (all ORs <1). Other factors were positively associated with detectable VL, including patients <30 years of age, single, non-adherent to treatment, and with a follow-up CD4 count <200 cells/µL. Patients infected through homosexual transmission and those with a longer ART duration were more likely to reach virologic suppression. We demonstrated outstanding time trend improvements in the virological outcomes of PLWHA in China.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Antiretroviral Therapy, Highly Active , Retrospective Studies , Longitudinal Studies , Treatment Outcome , HIV Infections/drug therapy , CD4 Lymphocyte Count , Viral Load , Anti-HIV Agents/therapeutic use
16.
Mol Ther ; 30(4): 1564-1577, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35051616

ABSTRACT

Oral squamous cell carcinoma (OSCC), which is typically preceded by oral leukoplakia (OL), is a common malignancy with poor prognosis. However, the signaling molecules governing this progression remain to be defined. Based on microarray analysis of genes expressed in OL and OSCC samples, we discovered that the long non-coding RNA IFITM4P was highly expressed in OSCC, and ectopic expression or knockdown of IFITM4P resulted in increased or decreased cell proliferation in vitro and in xenografted tumors, respectively. Mechanistically, in the cytoplasm IFITM4P acted as a scaffold to facilitate recruiting SASH1 to bind and phosphorylate TAK1 (Thr187), and in turn to increase the phosphorylation of nuclear factor κB (Ser536) and concomitant induction of PD-L1 expression, resulting in activation of an immunosuppressive program that allows OL cells to escape anti-cancer immunity in cytoplasm. In nucleus, IFITM4P reduced Pten transcription by enhancing the binding of KDM5A to the Pten promoter, thereby upregulating PD-L1 in OL cells. Moreover, mice bearing tumors with high IFITM4P expression had notable therapeutic sensitivity to PD-1 monoclonal antibody (mAb) treatment. Collectively, these data demonstrate that IFITM4P may serve as a new therapeutic target in blockage of oral carcinogenesis, and PD-1 mAb can be an effective reagent to treat OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , RNA, Long Noncoding , Animals , Antibodies, Monoclonal , B7-H1 Antigen/metabolism , Carcinogenesis/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Mice , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Programmed Cell Death 1 Receptor , RNA, Long Noncoding/genetics
17.
BMC Pregnancy Childbirth ; 23(1): 511, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37442982

ABSTRACT

BACKGROUND: Abdominal pregnancy, a rare form of ectopic pregnancy, is associated with high morbidity and adverse consequences for future fertility. Early recognition and management reduce mortality and allow minimal invasive and conservative treatment. In modern medicine, primitive prevention to unexpected fatal pregnancies is crucial. CASE PRESENTATION: A divorced 33-year-old "self-identified" infertile polycystic ovary woman diagnosed as repeated implantation failure in previous in vitro fertilization with her ex-husband ever presented in surgery department with a history of 15-day abdominal pain, nausea, and vomiting and 3-h worsening abdominal pain. The serum beta-human chorionic gonadotropin value was more than 10,000 m-international units per milliliter. Sonogram findings were significant for the absence of intrauterine gestation; a placenta and well-formed living fetus of second-trimester gestation were seen in the abdomen, accompanied by hemoperitoneum. A unique spontaneously second-trimester tubo-abdominal pregnancy was confirmed in emergent laparotomy by gynecologists, she received a removing of the living fetus, a right total salpingectomy, resection of partial omentum and blood transfusion. The patient recovered uneventfully and her serum beta-human chorionic gonadotropin returned to normal range on the 30th postoperative day, till now, she has weak fertility awareness because of her catastrophic experiences in the unexpected abdominal pregnancy. CONCLUSIONS: This case highlights woman with a previous in vitro fertilization history may be in is a high risk to be delayed or missed in diagnosis in an intended ectopic pregnancy due to a fixed belief in infertility. Educational interventions and contraceptive care should be provided by fertility and healthcare practitioner. The possibility of abdominal pregnancy must always be suspected and dealt with promptly and appropriately by the astute clinician.


Subject(s)
Pregnancy, Abdominal , Pregnancy , Female , Humans , Adult , Pregnancy, Abdominal/diagnosis , Pregnancy, Abdominal/surgery , Pregnancy Trimester, Second , Laparotomy , Chorionic Gonadotropin, beta Subunit, Human , Abdomen/surgery , Abdominal Pain/etiology , Abdominal Pain/surgery
18.
Lipids Health Dis ; 22(1): 35, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890516

ABSTRACT

BACKGROUND: The triglyceride glucose (TyG) index has been considered a new biomarker for the diagnosis of angiocardiopathy and insulin resistance. However, the association of the TyG index with subclinical left ventricular (LV) systolic dysfunction still lacks comprehensive exploration. This study was carried out to examine this relationship in patients with type 2 diabetes mellitus (T2DM). METHODS: A total of 150 T2DM patients with preserved LV ejection fraction (LVEF ≥ 50%) from June 2021 to December 2021 were included in this study. The subclinical LV function was evaluated through global longitudinal strain (GLS), with the predefined GLS < 18% as the cutoff for subclinical LV systolic dysfunction. The TyG index calculation was obtained according to ln (fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2), which was then stratified into quartiles (TyG index-Q). RESULTS: Analyses of clinical characteristics in the four TyG indexes-Q (Q1 (TyG index ≤ 8.89) n = 38, Q2 (8.89 < TyG index ≤ 9.44) n = 37, Q3 (9.44 < TyG index ≤ 9.83) n = 38, and Q4 (TyG index > 9.83) n = 37) were conducted. A negative correlation of the TyG index with GLS (r = -0.307, P < 0.001) was revealed according to correlation analysis. After gender and age were adjusted in multimodel logistic regression analysis, the higher TyG index (OR 6.86; 95% CI 2.44 to 19.30; P < 0.001, Q4 vs Q1) showed a significant association with GLS < 18%, which was still maintained after further adjustment for related clinical confounding factors (OR 5.23, 95% CI 1.12 to 24.51, p = 0.036, Q4 vs Q1). Receiver operator characteristic analysis indicated a diagnostic capacity of the TyG index for GLS < 18% (area under curve: 0.678; P < 0.001). CONCLUSIONS: A higher TyG index had a significant association with subclinical LV systolic dysfunction in T2DM patients with preserved ejection fraction, and the TyG index may have the potential to exert predictive value for myocardial damage.


Subject(s)
Diabetes Mellitus, Type 2 , Ventricular Dysfunction, Left , Humans , Glucose , Risk Factors , Triglycerides , Ventricular Dysfunction, Left/diagnostic imaging , Blood Glucose , Biomarkers
19.
Chin J Physiol ; 66(6): 546-557, 2023.
Article in English | MEDLINE | ID: mdl-38149567

ABSTRACT

Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Luciferases/metabolism , Macrophages , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
J Environ Manage ; 328: 116986, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36527802

ABSTRACT

Carbon compensation is an effective way of reducing carbon emissions. However, previous studies in this field have been limited and have not examined high-precision scientific carbon compensation under regional inequity. The present study examined initial carbon compensation in the grid and developed a new equitable carbon compensation model. Additionally, it modified the carbon compensation value for each province and analysed how land-use change affected carbon compensation. The results show that, after the modification, the entire carbon deficit reached 17.34 × 108 t C in 2015, representing a decrease of 14% compared with the initial carbon deficit. The area with negative carbon deficit values accounted for 36% of the whole area, concentrated mainly in the south, southwest and northwest. Without modification, the initial carbon compensation reached 537 × 108 USD, and only Yunnan, Sichuan and Hainan provinces being eligible to receive compensation. The final modified carbon compensation was approximately 20% of the initial values, and 11 provinces were eligible to obtain compensation. The other provinces responsible for paying the carbon compensation costs were typically concentrated in Central and Eastern China. Land-use changes in 2015 led to increases in the initial carbon compensation and modified carbon compensation of 3.74 × 108 and 0.13 × 108 USD, respectively. The per-unit land-use change caused greater increases in carbon emissions in China's big cities and the provinces in Central and East China. Some policies, such as macro-control by the central government, diversified forms and patterns of compensation, and auxiliary measures should be formulated/proposed.


Subject(s)
Carbon Dioxide , Carbon , China , Carbon/analysis , Cities , Carbon Dioxide/analysis , Economic Development
SELECTION OF CITATIONS
SEARCH DETAIL