ABSTRACT
An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.
Subject(s)
Plasmodium falciparum , Sporozoites , Animals , Humans , Mice , Culicidae/parasitology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/biosynthesis , Malaria Vaccines/chemistry , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Sporozoites/growth & development , Sporozoites/pathogenicity , Hepatocytes/parasitology , Liver/parasitology , Merozoite Surface Protein 1 , Erythrocytes/parasitology , In Vitro TechniquesABSTRACT
KEY MESSAGE: Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.
Subject(s)
Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/growth & development , Chromosome Mapping/methods , Genes, Plant , Genome-Wide Association Study , Genetic Association Studies , Linkage Disequilibrium , GenotypeABSTRACT
BACKGROUND: The purpose of this study is to determine the variations in the prevalence of self-reported asthma among the adult population in the United States of America (USA), analyzing demographic characteristics, physical indicators, living habits, and sarcopenia. METHODS: 10,566 participants from the 2009 to 2018 National Health and Nutrition Examination Survey (NHANES) of the USA who were 20 years of age or older and not pregnant were included in the study. RESULTS: The prevalence of patients with asthma varies by age, gender, and race. The weighted prevalence is 15.5%, estimated to represent 19.36 million people in the USA (95% CI, 14.5% to 16.6%). The prevalence of self-reported asthma decreases with age, with the highest prevalence among young adults aged 20-25 for both males and females. Females were also more susceptible to asthma compared to males. The increase in asthma prevalence attributed to smoking was most pronounced among African American and Caucasian participants (p < 0.05), while its effect on Mexican American and Asian participants was relatively minor. Notably, the prevalence of asthma was significantly higher in African American and Caucasian participants with sarcopenia compared to those without sarcopenia. CONCLUSIONS: The prevalence of asthma is associated to varying degrees with factors such as age, gender, smoking, and the presence of sarcopenia. The elevated prevalence of asthma among young people and females warrants attention. Intensifying efforts toward smoking cessation and the scientific management of sarcopenia could be instrumental in reducing the incidence of asthma.
ABSTRACT
A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.
Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Vaccines, Attenuated/immunology , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Chloroquine/therapeutic use , Double-Blind Method , Healthy Volunteers , Humans , Immunologic Memory/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Middle Aged , Plasmodium falciparum/classification , Sporozoites/immunology , T-Lymphocytes/immunology , Time Factors , Vaccines, Attenuated/administration & dosage , Young AdultABSTRACT
A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.
Subject(s)
Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Vaccines, Attenuated/administration & dosage , Adolescent , Adult , Female , Healthy Volunteers , Humans , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/pathogenicity , Sporozoites/immunology , Sporozoites/pathogenicity , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunologyABSTRACT
Untethered microgrippers that can navigate in hard-to-reach and unpredictable environments are significantly important for biomedical applications such as targeted drug delivery, micromanipulation, minimally invasive surgery and in vivo biopsy. Compared with the traditional tethered microgrippers, the wireless microgrippers, due to the exceptional characteristics such as miniaturized size, untethered actuation, dexterous and autonomous motion, are projected to be promising microtools in various future applications. In this review, we categorize the untethered microgrippers into five major classes, i.e. microgrippers responsive to thermal, microgrippers actuated by magnetic fields, microgrippers responsive to chemicals, light-driven microgrippers and hybrid actuated microgrippers. Firstly, the actuation mechanisms of these microgrippers are introduced. The challenges faced by these microgrippers are also covered in this part. With that, the fabrication methods of these microgrippers are summarized. Subsequently, the applications of microgrippers are presented. Additionally, we conduct a comparison among different actuation mechanisms to explore the advantages and potential challenges of various types of microgrippers. In the end of this review, conclusions and outlook of the development and potential applications of the microgrippers are discussed.
Subject(s)
Biomimetics/instrumentation , Hand/physiology , Microtechnology/instrumentation , Robotics/instrumentation , Humans , TemperatureABSTRACT
The hysteresis phenomenon frequently arises in two-dimensional (2D) material nanoindentation, which is generally expected to be excluded from characterizing the elastic properties due to the imperfect elastic behaviour. However, the underlying mechanism of hysteresis and its effect on the characterization of the mechanical properties of 2D materials remain unclear. Cyclic loadings are exerted on the suspended monolayer molybdenum-disulfide (MoS2) films in atomic force microscopy (AFM) nanoindentation experiments. The elastic hysteresis loops are observed for most of the force-displacement curves. The friction/wear between the AFM silicon tip and the MoS2 monolayer is deemed to be dominant compared to the friction between the monolayer and the silicon dioxide substrate after the analysis, as determined using the finite element method (FEM) simulation. The loading force-displacement curves instead of the unloading curves have been used to deduce the elastic mechanical properties using a modified regression equation. The mean value of the obtained Young's modulus of monolayer MoS2, E, is equal to 209 ± 18 GPa, which is close to the inherent stiffness value, predicted by first principles calculation. Our results have confirmed that it is not obligatory to exclude the sample data with hysteresis behaviour for characterizing the elastic properties of 2D materials. In addition, all sample sheets have finally been penetrated and the mean breaking stress value, σmax, is 36.6 ± 0.9 GPa, determined using the radius value of the worn tip. Furthermore, the effect of the loading force and the shape/size of the suspended monolayer MoS2 sheets on the hysteresis behaviour in the 2D nanoindentation have also been analyzed and discussed, exhibiting interesting trends. Our findings provide guidance for the characterization of the mechanical properties of 2D materials using the AFM nanoindentation and the experimental samples with elastic hysteresis behaviour.
ABSTRACT
Shigella sonnei and Salmonella Typhi cause significant morbidity and mortality. We exploited the safety record of the oral, attenuated S. Typhi vaccine (Ty21a) by using it as a vector to develop a bivalent oral vaccine to protect against S. sonnei shigellosis and typhoid fever. We recombineered the S. sonnei form I O-antigen gene cluster into the Ty21a chromosome to create Ty21a-Ss, which stably expresses S. sonnei form I O antigen. To enhance survivability in the acid environment of the stomach, we created an acid-resistant strain, Ty21a-AR-Ss, by inserting Shigella glutaminase-glutamate decarboxylase systems coexpressed with S. sonnei form I O-antigen gene. Mice immunized intranasally with Ty21a-AR-Ss produced antibodies against S. sonnei and S. Typhi, and survived lethal intranasal S. sonnei challenge. This paves the way for proposed good manufacturing practices manufacture and clinical trials intended to test the clinical effectiveness of Ty21a-AR-Ss in protecting against S. sonnei shigellosis and typhoid fever, as compared with the current Ty21a vaccine.
Subject(s)
Dysentery, Bacillary/prevention & control , Shigella Vaccines/immunology , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/immunology , Administration, Intranasal , Administration, Oral , Animals , Antibodies, Bacterial/blood , Female , Mice, Inbred BALB C , Salmonella typhi/genetics , Salmonella typhi/immunology , Shigella Vaccines/administration & dosage , Shigella Vaccines/genetics , Shigella sonnei/genetics , Shigella sonnei/immunology , Survival Analysis , Typhoid-Paratyphoid Vaccines/administration & dosage , Typhoid-Paratyphoid Vaccines/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunologyABSTRACT
The nonlocal scale parameter of nonlocal Euler-Bernoulli beam theory is evaluated for the static bending of single-layer molybdenum disulfide (SLMoS2) without predetermined bending rigidity. The evaluation is performed by matching the fitted curve between the maximum deflection and the beam length obtained from molecular mechanics simulations. It was observed that the fitted curves have an abnormal sign in the second-order term of the maximum deflection for SLMoS2, opposite to that for graphene and regardless of the interatomic interaction potentials used. Based on the nature of 'nonlocal' and the phenomenological point of view, a modified nonlocal constitutive relation with a positive sign in front of the higher-order term is suggested for SLMoS2. The nonlocal parameter and the bending rigidity of SLMoS2 are finally extracted, and the effect of the nonlocal scale parameter on the bending response for SLMoS2 is found to be significant for beam length less than a critical length, depending on both the interatomic interaction potentials and the boundary conditions. Our new perspective should be useful for researchers who are interested in the engineering application of graphene-like quasi-two-dimensional nanostructures using nonlocal beam theories.
ABSTRACT
Molecular dynamics simulations on nanoindentation of circular monolayer molybdenum disulfide (MoS2) film are carried out to elucidate the deformation and failure mechanisms. Typical force-deflection curves are obtained, and in-plane stiffness of MoS2 is extracted according to a continuum mechanics model. The measured in-plane stiffness of monolayer MoS2 is about 182 ± 14 N m-1, corresponding to an effective Young's modulus of 280 ± 21 GPa. More interestingly, at a critical indentation depth, the loading force decreases sharply and then increases again. The loading-unloading-reloading processes at different initial unloading deflections are also conducted to explain the phenomenon. It is found that prior to the critical depth, the monolayer MoS2 film can return to the original state after completely unloading, while there is hysteresis when unloading after the critical depth and residual deformation exists after indenter fully retracted, indicating plasticity. This residual deformation is found to be caused by the changed lattice structure of the MoS2, i.e. a phase transformation. The critical pressure to induce the phase transformation is then calculated to be 36 ± 2 GPa, consistent with other studies. Finally, the influences of temperature, the diameter and indentation rate of MoS2 monolayer on the mechanical properties are also investigated.
ABSTRACT
Self-assembly of gold nanoparticles into one-dimensional (1D) nanostructures with finite primary units was achieved by introducing a thin salt (NaCl) solution layer into density gradient before centrifugation. The electrostatic interactions between Au nanoparticles would be affected and cause 1D assembly upon passing through the salt layer. A negatively charged polymer such as poly(acrylic acid) was used as an encapsulation/stabilization layer to help the formation of 1D Au assemblies, which were subsequently sorted according to unit numbers at succeeding separation zones. A centrifugal field was introduced as the external field to overcome the random Brownian motion of NPs and benefit the assembly effect. Such a facile "one-tube synthesis" approach couples assembly and separation in one centrifuge tube by centrifuging once. The method can be tuned by changing the concentration of interference salt layer, encapsulation layer, and centrifugation rate. Furthermore, positively charged fluorescent polymers such as perylenediimide-poly(N,N-diethylaminoethyl methacrylate) could encapsulate the assemblies to give tunable fluorescence properties.
Subject(s)
Centrifugation, Density Gradient/instrumentation , Colloids/chemistry , Gold/chemistry , Nanoparticles/chemistry , Nanotechnology/instrumentation , Colloids/isolation & purification , Equipment Design , Fluorescent Dyes/chemistry , Fluorescent Dyes/isolation & purification , Gold/isolation & purification , Methacrylates/chemistry , Methacrylates/isolation & purification , Nanoparticles/ultrastructureABSTRACT
BACKGROUND: A vaccine that interrupts malaria transmission (VIMT) would be a valuable tool for malaria control and elimination. One VIMT approach is to identify sexual erythrocytic and mosquito stage antigens of the malaria parasite that induce immune responses targeted at disrupting parasite development in the mosquito. The standard Plasmodium falciparum membrane-feeding assay (SMFA) is used to assess transmission-blocking activity (TBA) of antibodies against candidate immunogens and of drugs targeting the mosquito stages. To develop its P. falciparum sporozoite (SPZ) products, Sanaria has industrialized the production of P. falciparum-infected Anopheles stephensi mosquitoes, incorporating quantitative analyses of oocyst and P. falciparum SPZ infections as part of the manufacturing process. METHODS: These capabilities were exploited to develop a robust, reliable, consistent SMFA that was used to assess 188 serum samples from animals immunized with the candidate vaccine immunogen, Pfs25, targeting P. falciparum mosquito stages. Seventy-four independent SMFAs were performed. Infection intensity (number of oocysts/mosquito) and infection prevalence (percentage of mosquitoes infected with oocysts) were compared between mosquitoes fed cultured gametocytes plus normal human O(+) serum (negative control), anti-Pfs25 polyclonal antisera (MRA39 or MRA38, at a final dilution in the blood meal of 1:54 as positive control), and test sera from animals immunized with Pfs25 (at a final dilution in the blood meal of 1:9). RESULTS: SMFA negative controls consistently yielded high infection intensity (mean = 46.1 oocysts/midgut, range of positives 3.7-135.6) and infection prevalence (mean = 94.2%, range 71.4-100.0) and in positive controls, infection intensity was reduced by 81.6% (anti-Pfs25 MRA39) and 97.0% (anti-Pfs25 MRA38), and infection prevalence was reduced by 12.9 and 63.5%, respectively. A range of TBAs was detected among the 188 test samples assayed in duplicate. Consistent administration of infectious gametocytes to mosquitoes within and between assays was achieved, and the TBA of anti-Pfs25 control antibodies was highly reproducible. CONCLUSIONS: These results demonstrate a robust capacity to perform the SMFA in a medium-to-high throughput format, suitable for assessing large numbers of experimental samples of candidate antibodies or drugs.
Subject(s)
Anopheles/physiology , Antimalarials/pharmacology , Biological Assay/methods , Malaria Vaccines/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/immunology , Animals , Feeding Behavior , Female , Membranes/physiologyABSTRACT
The rotating arc plasma method, based on its unique characteristics, provides a simple, efficient, and catalyst-free approach for graphene material synthesis. This study employs molecular dynamics simulations to theoretically investigate the detailed growth process of graphene at the atomic scale using plasma. During the growth process, different radicals serve as dissociation precursors within the plasma. Simulation results indicate that the growth process of graphene clusters involves three stages: extension of carbon clusters, cyclization of carbon chains, and coalescence of clusters into sheets. Firstly, the precursor concentration affects the size of graphene clusters; increasing the precursor concentration enlarges the cluster size but also increases the likelihood of curling. Secondly, increasing the hydrogen content in the precursor can reduce the growth rate of clusters, decrease dangling bonds at the periphery of clusters, thereby slowing down cluster closure and maintaining a well-defined sheet structure. Lastly, appropriately elevating the simulation temperature can enhance the reaction rate during the simulation process without altering the reaction pathway. These research findings establish the foundation for understanding the growth mechanism of graphene.
Subject(s)
Graphite , Molecular Dynamics Simulation , Graphite/chemistry , Plasma Gases/chemistryABSTRACT
OBJECTIVES: The aim of the study was to comprehensively analyze the effects of whey protein (WP)-enriched supplement intake with or without resistance training (RT) in older patients, either from the community or hospital, who were diagnosed with sarcopenia according to the EWGSOP or AWGS criteria. METHODS: This meta-analysis study was registered in PROSPERO (CRD42023407885). We searched the PubMed, Embase, Web of Science, and Cochrane Library databases for RCTs up to June 1, 2023. Standardized mean differences (SMD) with 95% confidence intervals (CI) were used to estimate the pooled results. RESULTS: Ten RCT studies, including 1154 participants, were included and analyzed. The primary outcomes were the changes in muscle mass, strength, and physical performance. In WP group versus (vs.) Isocaloric placebo (PLA)/Routine consultation (RC) group, WP significantly increased the appendicular skeletal muscle mass index (SMD: 0.47, 95%CI: 0.23, 0.71), appendicular skeletal muscle mass (SMD: 0.28, 95%CI: 0.11, 0.45) and gait speed (SMD: 1.13, 95%CI: 0.82, 1.44) in older patients with sarcopenia. In WP with RT group vs. PLA/ RC group, there was significant increase in handgrip strength (SMD: 0.67, 95%CI: 0.29, 1.04). In addition, in the secondary outcomes, WP significantly reduced interleukin-6, significantly increased insulin-like growth factor-1 and albumin, promoted participants' intake of total energy and protein, enhanced activities of daily living scores in patients, and had no significant effect on BMI, weight, or fat mass. CONCLUSION: This review confirms that WP can improve various aspects of older adult with sarcopenia, thereby enhancing their overall physical condition. More studies should be conducted to validate this result and further explore the effects of WP and RT in patients with sarcopenia.
Subject(s)
Dietary Supplements , Muscle Strength , Randomized Controlled Trials as Topic , Resistance Training , Sarcopenia , Whey Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Physical Functional Performance , Resistance Training/methods , Whey Proteins/administration & dosageABSTRACT
Excessive lead (Pb) in the soil affects crop growth and development, thus threatening human beings via food chains. Plasma membrane intrinsic proteins (PIPs) facilitate the transport of substrates across cell membranes. Herein, we characterized maize PIPs and identified eight Pb accumulation-associated PIP genes using association studies. Among these, ZmPIP1;6 was simultaneously correlated with root Pb concentrations under various Pb treatment stages. Significant correlations were observed between the ZmPIP1;6 expression abundance and Pb accumulation in maize roots. Ectopic expression in yeast showed that ZmPIP1;6 conferred Pb accumulation in the cells and affected Pb tolerance in yeast. Overexpression in maize demonstrated that ZmPIP1;6 altered the Pb concentration performance and root moisture content under Pb stress. Meanwhile, protein interaction analyses suggested that ZmPIP1; 6 and three PIP2 members formed isoforms and facilitate water uptake in maize roots. However, ZmPIP1; 6 improved Pb absorption in maize roots probably by interacting with CASP-like protein 2C3 and/or another metal transporter. Moreover, the significant variants in the ZmPIP1;6 promoter caused the variations in ZmPIP1;6 expression level and Pb accumulation among various maize germplasms. Our study will contribute to understanding of PIP family-mediated Pb accumulation in crops and bioremediation of Pb-polluted soils.
Subject(s)
Lead , Plant Proteins , Plant Roots , Water , Zea mays , Zea mays/metabolism , Zea mays/genetics , Plant Roots/metabolism , Plant Roots/genetics , Lead/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Gene Expression Regulation, Plant , Aquaporins/metabolism , Aquaporins/geneticsABSTRACT
Background: The correlation between pre-operative serum pre-albumin and surgical site infection (SSI) has been the focus of many studies. However, existing literature presents conflicting evidence on this association. Therefore, this meta-analysis was conducted to determine the significance of low serum pre-albumin as a prognostic factor SSI, and to assess the potential utility of pre-albumin in predicting SSI. Methods: A comprehensive literature search and analysis was conducted in PubMed, Web of Science, Cochrane of Library, Scopus, Embase, and Google Scholar databases through August 2022 to identify studies reporting low pre-operative serum pre-albumin levels in patients undergoing surgery and their association with SSIs. The pooled risk estimates were shown in odds ratio with 95% confidence interval. The random effect model was used according to the test of heterogeneity among studies. Subgroup analyses and sensitivity analyses were performed to identify the possible sources of heterogeneity. This meta-analysis was prospectively registered in the PROSPERO database (number: CRD42022376167). Results: Nine studies involving 5,306 patients were eligible. The results demonstrated an association between low pre-operative serum pre-albumin levels and a higher probability of developing SSI (odds ratio [OR], 2.04; 95% confidence interval [CI], 1.28-3.26). Conclusions: Our findings suggest that low serum pre-albumin level may serve as an independent and valuable predictor of SSI. These results provide important insights for clinicians in identifying high-risk patients and implementing preventive measures.
Subject(s)
Surgical Wound Infection , Humans , Surgical Wound Infection/epidemiology , Surgical Wound Infection/prevention & controlABSTRACT
The relationship between PLIN2 expression and prognosis, and clinicopathological significance of various cancers has been extensively studied, but the results are not completely consistent. This review followed the guidelines for systematic reviews of prognostic factors studies and was reported under the Preferred Reporting Program for Systematic Reviews and Meta-Analysis (PRISMA). We searched PubMed, Embase, Cochrane Library, Web of Science, and Google Academia for relevant articles up to September 2, 2022, and calculated the pooled hazard ratios (HR) with 95% confidence intervals (CI) to determine the association between PLIN2 expression and the prognosis of various cancers. The meta-analysis ultimately included 17 studies. The quality of all included cohort studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool, and an adaptation of Grading of Recommendations Assessment, Development and Evaluation (GRADE) method was used to assess the certainty of the results. High expression of PLIN2 was associated with poorer overall survival (HR = 1.65; 95% CI = 1.14, 2.38; P = 0.008), metastasis-free survival (HR = 1.48; 95% CI = 1.12, 1.94; P = 0.005), progression-free survival (HR = 2.11; 95% CI = 1.55, 2.87; P < 0.0005) and recurrence-free survival/relapse-free survival (HR = 2.21; 95% CI = 1.64, 2.98; P < 0.0005) in cancers. The clinicopathological parameters of digestive system malignancies suggested that high expression of PLIN2 was notably associated with distant metastasis ( + ) (odds ratio (OR) = 3.37; 95% CI = 1.31, 8.67; P = 0.012), lymph node metastasis ( + ) (OR = 1.61; 95% CI = 1.01, 2.54; P = 0.004), and tumor stage (III-IV) (OR = 1.96; 95% CI = 1.24, 3.09; P = 0.006). In summary, overexpression of PLIN2 is significantly associated with a poor prognosis in various human cancers, especially in respiratory and digestive malignancies. Thus, PLIN2 expression may be a potential prognostic biomarker in cancer patients.
Subject(s)
Biomarkers, Tumor , Humans , Prognosis , Lymphatic Metastasis , Progression-Free Survival , Proportional Hazards Models , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Perilipin-2ABSTRACT
Primary headache is a very common and burdensome functional headache worldwide, which can be classified as migraine, tension-type headache (TTH), trigeminal autonomic cephalalgia (TAC), and other primary headaches. Managing and treating these different categories require distinct approaches, and accurate diagnosis is crucial. Functional magnetic resonance imaging (fMRI) has become a research hotspot to explore primary headache. By examining the interrelationships between activated brain regions and improving temporal and spatial resolution, fMRI can distinguish between primary headaches and their subtypes. Currently the most commonly used is the cortical brain mapping technique, which is based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). This review sheds light on the state-of-the-art advancements in data analysis based on fMRI technology for primary headaches along with their subtypes. It encompasses not only the conventional analysis methodologies employed to unravel pathophysiological mechanisms, but also deep-learning approaches that integrate these techniques with advanced statistical modeling and machine learning. The aim is to highlight cutting-edge fMRI technologies and provide new insights into the diagnosis of primary headaches.
ABSTRACT
BACKGROUND: With fast rising incidence, papillary thyroid carcinoma (PTC) is the most common head and neck cancer. Parthenolide, isolated from traditional Chinese medicine, inhibits various cancer cells, including PTC cells. The aim was to investigate the lipid profile and lipid changes of PTC cells when treated with parthenolide. METHODS: Comprehensive lipidomic analysis of parthenolide treated PTC cells was conducted using a UHPLC/Q-TOF-MS platform, and the changed lipid profile and specific altered lipid species were explored. Network pharmacology and molecular docking were performed to show the associations among parthenolide, changed lipid species, and potential target genes. RESULTS: With high stability and reproducibility, a total of 34 lipid classes and 1736 lipid species were identified. Lipid class analysis indicated that parthenolide treated PTC cells contained higher levels of fatty acid (FA), cholesterol ester (ChE), simple glc series 3 (CerG3) and lysophosphatidylglycerol (LPG), lower levels of zymosterol (ZyE) and Monogalactosyldiacylglycerol (MGDG) than controlled ones, but with no significant differences. Several specific lipid species were changed significantly in PTC cells treated by parthenolide, including the increasing of phosphatidylcholine (PC) (12:0e/16:0), PC (18:0/20:4), CerG3 (d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0), phosphatidylinositol (PI) (19:0/20:4), lysophosphatidylcholine (LPC) (28:0), ChE (22:6), and the decreasing of phosphatidylethanolamine (PE) (16:1/17:0), PC (34:1) and PC (16:0p/18:0). Four key targets (PLA2G4A, LCAT, LRAT, and PLA2G2A) were discovered when combining network pharmacology and lipidomics. Among them, PLA2G2A and PLA2G4A were able to bind with parthenolide confirmed by molecular docking. CONCLUSIONS: The changed lipid profile and several significantly altered lipid species of parthenolide treated PTC cells were observed. These altered lipid species, such as PC (34:1), and PC (16:0p/18:0), may be involved in the antitumor mechanisms of parthenolide. PLA2G2A and PLA2G4A may play key roles when parthenolide treated PTC cells.
Subject(s)
Lipidomics , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary , Molecular Docking Simulation , Network Pharmacology , Reproducibility of Results , Thyroid Neoplasms/metabolismABSTRACT
Background: While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods: Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results: Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion: Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.