Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | MEDLINE | ID: mdl-38908733

ABSTRACT

BACKGROUND & AIMS: Post-acute COVID-19 syndrome (PACS) is associated with sleep disturbance, but treatment options are limited. The etiology of PACS may be secondary to alterations in the gut microbiome. Here, we report the efficacy of fecal microbiota transplantation (FMT) in alleviating post-COVID insomnia symptoms in a nonrandomized, open-label prospective interventional study. METHODS: Between September 22, 2022, and May 22, 2023, we recruited 60 PACS patients with insomnia defined as Insomnia Severity Index (ISI) ≥8 and assigned them to the FMT group (FMT at weeks 0, 2, 4, and 8; n = 30) or the control group (n = 30). The primary outcome was clinical remission defined by an ISI of <8 at 12 weeks. Secondary outcomes included changes in the Pittsburgh Sleep Quality Index, Generalized Anxiety Disorder-7 scale, Epworth Sleepiness Scale, Multidimensional Fatigue Inventory, blood cortisol and melatonin, and gut microbiome analysis on metagenomic sequencing. RESULTS: At week 12, more patients in the FMT than the control group had insomnia remission (37.9% vs 10.0%; P = .018). The FMT group showed a decrease in ISI score (P < .0001), Pittsburgh Sleep Quality Index (P < .0001), Generalized Anxiety Disorder-7 scale (P = .0019), Epworth Sleepiness Scale (P = .0057), and blood cortisol concentration (P = .035) from baseline to week 12, but there was no significant change in the control group. There was enrichment of bacteria such as Gemmiger formicilis and depletion of microbial pathways producing menaquinol derivatives after FMT. The gut microbiome profile resembled that of the donor in FMT responders but not in nonresponders at week 12. There was no serious adverse event. CONCLUSIONS: This pilot study showed that FMT could be effective and safe in alleviating post-COVID insomnia, and further clinical trials are warranted. CLINICALTRIALS: gov, Number: NCT05556733.

2.
Nat Microbiol ; 9(9): 2344-2355, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38977906

ABSTRACT

Associations between the gut microbiome and autism spectrum disorder (ASD) have been investigated although most studies have focused on the bacterial component of the microbiome. Whether gut archaea, fungi and viruses, or function of the gut microbiome, is altered in ASD is unclear. Here we performed metagenomic sequencing on faecal samples from 1,627 children (aged 1-13 years, 24.4% female) with or without ASD, with extensive phenotype data. Integrated analyses revealed that 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic pathways were altered in children with ASD. Machine learning using single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 in differentiating children with ASD from those that are neurotypical. A panel of 31 multikingdom and functional markers showed a superior diagnostic accuracy with an AUC of 0.91, with comparable performance for males and females. Accuracy of the model was predominantly driven by the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which were less abundant in children with ASD. Collectively, our findings highlight the potential application of multikingdom and functional gut microbiota markers as non-invasive diagnostic tools in ASD.


Subject(s)
Autism Spectrum Disorder , Bacteria , Biomarkers , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/diagnosis , Female , Male , Child , Child, Preschool , Adolescent , Feces/microbiology , Biomarkers/analysis , Infant , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Metagenomics/methods , Machine Learning , Archaea/genetics , Archaea/metabolism , Archaea/classification , Archaea/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Metagenome
3.
Cell Host Microbe ; 32(5): 651-660.e4, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657605

ABSTRACT

The mechanisms underlying the many phenotypic manifestations of post-acute COVID-19 syndrome (PACS) are poorly understood. Herein, we characterized the gut microbiome in heterogeneous cohorts of subjects with PACS and developed a multi-label machine learning model for using the microbiome to predict specific symptoms. Our processed data covered 585 bacterial species and 500 microbial pathways, explaining 12.7% of the inter-individual variability in PACS. Three gut-microbiome-based enterotypes were identified in subjects with PACS and associated with different phenotypic manifestations. The trained model showed an accuracy of 0.89 in predicting individual symptoms of PACS in the test set and maintained a sensitivity of 86% and a specificity of 82% in predicting upcoming symptoms in an independent longitudinal cohort of subjects before they developed PACS. This study demonstrates that the gut microbiome is associated with phenotypic manifestations of PACS, which has potential clinical utility for the prediction and diagnosis of PACS.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Machine Learning , Phenotype , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , COVID-19/microbiology , Male , Female , Middle Aged , Adult , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Aged , Feces/microbiology , Feces/virology , Cohort Studies , Longitudinal Studies
4.
Lancet Infect Dis ; 24(3): 256-265, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38071990

ABSTRACT

BACKGROUND: Post-acute COVID-19 syndrome (PACS) affects over 65 million individuals worldwide but treatment options are scarce. We aimed to assess a synbiotic preparation (SIM01) for the alleviation of PACS symptoms. METHODS: In this randomised, double-blind, placebo-controlled trial at a tertiary referral centre in Hong Kong, patients with PACS according to the US Centers for Disease Control and Prevention criteria were randomly assigned (1:1) by random permuted blocks to receive SIM01 (10 billion colony-forming units in sachets twice daily) or placebo orally for 6 months. Inclusion criterion was the presence of at least one of 14 PACS symptoms for 4 weeks or more after confirmed SARS-CoV-2 infection, including fatigue, memory loss, difficulty in concentration, insomnia, mood disturbance, hair loss, shortness of breath, coughing, inability to exercise, chest pain, muscle pain, joint pain, gastrointestinal upset, or general unwellness. Individuals were excluded if they were immunocompromised, were pregnant or breastfeeding, were unable to receive oral fluids, or if they had received gastrointestinal surgery in the 30 days before randomisation. Participants, care providers, and investigators were masked to group assignment. The primary outcome was alleviation of PACS symptoms by 6 months, assessed by an interviewer-administered 14-item questionnaire in the intention-to-treat population. Forward stepwise multivariable logistical regression was performed to identify predictors of symptom alleviation. The trial is registered with ClinicalTrials.gov, NCT04950803. FINDINGS: Between June 25, 2021, and Aug 12, 2022, 463 patients were randomly assigned to receive SIM01 (n=232) or placebo (n=231). At 6 months, significantly higher proportions of the SIM01 group had alleviation of fatigue (OR 2·273, 95% CI 1·520-3·397, p=0·0001), memory loss (1·967, 1·271-3·044, p=0·0024), difficulty in concentration (2·644, 1·687-4·143, p<0·0001), gastrointestinal upset (1·995, 1·304-3·051, p=0·0014), and general unwellness (2·360, 1·428-3·900, p=0·0008) compared with the placebo group. Adverse event rates were similar between groups during treatment (SIM01 22 [10%] of 232 vs placebo 25 [11%] of 231; p=0·63). Treatment with SIM01, infection with omicron variants, vaccination before COVID-19, and mild acute COVID-19, were predictors of symptom alleviation (p<0·0036). INTERPRETATION: Treatment with SIM01 alleviates multiple symptoms of PACS. Our findings have implications on the management of PACS through gut microbiome modulation. Further studies are warranted to explore the beneficial effects of SIM01 in other chronic or post-infection conditions. FUNDING: Health and Medical Research Fund of Hong Kong, Hui Hoy and Chow Sin Lan Charity Fund, and InnoHK of the HKSAR Government. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Synbiotics , Pregnancy , Female , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Hong Kong/epidemiology , Double-Blind Method , Memory Disorders , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL