Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Chem ; 96(20): 8021-8035, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38659100

ABSTRACT

Alkali ion rechargeable batteries play a significant part in portable electronic devices and electronic vehicles. The rapid development of renewable energy technology nowadays demands batteries with even higher energy density for grid storage. To fulfill such demand, extensive research efforts have been devoted to optimizing electrochemical properties as well as developing novel energy storage schemes and designing new systems. In the investigation process, synchrotron-based X-ray spectroscopy plays a vital role in investigating the detailed degradation mechanism and developing novel energy storage schemes. Herein, we critically review the applications of synchrotron-based X-ray spectroscopy in battery research in recent years. This review begins with a discussion of the different scientific issues in alkali ion rechargeable batteries within various time and space scales. Subsequently, the principle of synchrotron-based X-ray spectroscopy is introduced, and the characteristics of various characterization techniques are summarized and compared. Typical application cases of synchrotron-based X-ray spectroscopy are then introduced into battery investigations. The final part presents perspectives in the development direction of both alkali ion rechargeable battery systems and synchrotron-based X-ray spectroscopy in the future.

2.
Plant Biotechnol J ; 21(10): 2125-2139, 2023 10.
Article in English | MEDLINE | ID: mdl-37402218

ABSTRACT

The plant cell wall is the first line of defence against physical damage and pathogen attack. Wall-associated kinase (WAK) has the ability to perceive the changes in the cell wall matrix and transform signals into the cytoplasm, being involved in plant development and the defence response. Downy mildew, caused by Hyaloperonospora brassicae, can result in a massive loss in Chinese cabbage (Brassica rapa L. ssp. pekinensis) production. Herein, we identified a candidate resistant WAK gene, BrWAK1, in a major resistant quantitative trait locus, using a double haploid population derived from resistant inbred line T12-19 and the susceptible line 91-112. The expression of BrWAK1 could be induced by salicylic acid and pathogen inoculation. Expression of BrWAK1 in 91-112 could significantly enhance resistance to the pathogen, while truncating BrWAK1 in T12-19 increased disease susceptibility. Variation in the extracellular galacturonan binding (GUB) domain of BrWAK1 was found to mainly confer resistance to downy mildew in T12-19. Moreover, BrWAK1 was proved to interact with BrBAK1 (brassinosteroid insensitive 1 associated kinase), resulting in the activation of the downstream mitogen-activated protein kinase (MAPK) cascade to trigger the defence response. BrWAK1 is the first identified and thoroughly characterized WAK gene conferring disease resistance in Chinese cabbage, and the plant biomass is not significantly influenced by BrWAK1, which will greatly accelerate Chinese cabbage breeding for downy mildew resistance.


Subject(s)
Brassica rapa , Brassica , Oomycetes , Brassica rapa/genetics , Plant Breeding , Oomycetes/genetics , Quantitative Trait Loci , Disease Resistance/genetics , Brassica/genetics , Plant Diseases/genetics
3.
BMC Plant Biol ; 22(1): 475, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36203134

ABSTRACT

Astragalus mongholicus is a widely used Traditional Chinese Medicine. However, cultivated A. mongholicus is often threatened by water shortage at all growth stage, and the content of medicinal compounds of cultivated A. mongholicus is much lower than that of wild plants. To alleviate drought stress on A. mongholicus and improve the accumulation of medicinal components in roots of A. mongholicus, we combined different bacteria with plant growth promotion or abiotic stress resistance characteristics and evaluated the role of bacterial consortium in helping plants tolerate drought stress and improving medicinal component content in roots simultaneously. Through the determination of 429 bacterial strains, it was found that 97 isolates had phosphate solubilizing ability, 63 isolates could release potassium from potash feldspar, 123 isolates could produce IAA, 58 isolates could synthesize ACC deaminase, and 21 isolates could secret siderophore. Eight bacterial consortia were constructed with 25 bacterial isolates with more than three functions or strong growth promoting ability, and six out of eight bacterial consortia significantly improved the root dry weight. However, only consortium 6 could increase the root biomass, astragaloside IV and calycosin-7-glucoside content in roots simultaneously. Under drought challenge, the consortium 6 could still perform these functions. Compared with non-inoculated plants, the root dry weight of consortium inoculated-plants increased by 120.0% and 78.8% under mild and moderate drought stress, the total content of astragaloside IV increased by 183.83% and 164.97% under moderate and severe drought stress, calycosin-7-glucoside content increased by 86.60%, 148.56% and 111.45% under mild, moderate and severe drought stress, respectively. Meanwhile, consortium inoculation resulted in a decrease in MDA level, while soluble protein and proline content and SOD, POD and CAT activities increased. These findings provide novel insights about multiple bacterial combinations to improve drought stress responses and contribute to accumulate more medicinal compounds.


Subject(s)
Astragalus propinquus , Droughts , Bacteria , Glucosides/metabolism , Phosphates/metabolism , Plant Roots/metabolism , Plants , Potassium/metabolism , Proline/metabolism , Saponins , Siderophores/metabolism , Superoxide Dismutase/metabolism , Triterpenes , Water/metabolism
4.
Langmuir ; 38(10): 3284-3296, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35231169

ABSTRACT

Microalgal biofilm, a stable community of many algal cells attached to a solid substrate, plays a significant role in the efficient accumulation of renewable energy feedstocks, wastewater treatment, and carbon reduction. The adhesion tendency of microalgal cells on solid substrates is the basis for controlling the formation and development of microalgal biofilm. To promote the adhesion of microalgal cells on solid substrates, it is necessary to clarify which surface properties have to be changed in the most critical factors affecting the adhesion. However, there have been few systematic discussions on what surface properties influence the adhesion tendency of algal cells on solid substrates. In this study, the essential principle of microalgal cell adhesion onto solid substrates was explored from the perspective of the interaction energy between microalgal cells and solid substrates. The influence of surface properties between microalgal cells and solid substrates on interaction energies was discussed via extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) theory and a sensitivity analysis. The results showed that surface properties, including surface potential (ξ) and surface free energy components, significantly affect the adhesion tendency of microalgal cells on different solid substrates. When the solid surface possesses positive charges (ξ > 0), reducing ξ or the electron donor components of the solid substrate (γs-) is an effective measure to promote microalgal cell adhesion onto the solid substrate. When the solid surface possesses negative charges (ξ < 0), an increase in either γs- or the absolute value of ξ should be avoided in the process of microalgae adhesion. Overall, this research provides a direction for the selection of solid substrates and a direction for surface modification to facilitate the adhesion tendency of microalgal cells on solid substrates under different scenarios.


Subject(s)
Microalgae , Biofilms , Biomass , Cell Adhesion , Surface Properties
5.
Ecotoxicol Environ Saf ; 230: 113152, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34983008

ABSTRACT

The codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is one of the most notorious pests of pome fruits and walnuts worldwide, which has developed resistance to almost all classes of insecticides, including abamectin (ABM). ATP-binding cassette (ABC) transporters are thought to play a vital roles in insecticide detoxification by reducing the toxic concentrations of insecticides in an organism tissues. Despite the tremendous progress in understanding the detoxification mechanisms at the molecular level, the physiological functions of ABC transporters in insects have been poorly investigated. In this study, we found that the ABC inhibitor verapamil synergized significantly the toxicity of ABM, suggesting a potential role of ABC in detoxification. A total of 54 ABC genes were identified in the third-instar larvae of C. pomonella after treatment with sublethal doses (LD10 and LD30) of ABM. The expression profile of these genes in ABM-treated larvae at different time points (24, 48, 72 hr) using transcriptomic analysis (RNA-seq) was also investigated. The results showed that the expression of about 30 ABC genes was significantly co-upregulated after treatment. Several specific genes were up-regulated at 48 hr after treatment of larvae with LD10 ABM. Among these up-regulated genes, we found that the relative expression level of the CPOM19553 was 29.7-fold and 16.0-fold higher when larvae were exposed to ABM at the LD10 and LD30 doses compared to control, respectively. Unlike other ABC genes, only CPOM08323 exhibited significant expression levels in the head and cuticle of the third-instar larvae of C. pomonella exposed to the two sublethal doses of ABM, with no expression was observed in the detoxification tissues such as midgut and Malpighian tubule. This study suggests that these up-regulated genes may be involved in ABM resistance in C. pomonella. Our findings will provide an additional information required for further analysis of ABC transporter genes associated with xenobiotic metabolism in C. pomonella.

6.
Plant Biotechnol J ; 19(5): 966-976, 2021 05.
Article in English | MEDLINE | ID: mdl-33283404

ABSTRACT

Brassica rapa displays a wide range of morphological diversity which is exploited for a variety of food crops. Here we present a high-quality genome assembly for pak choi (Brassica rapa L. subsp. chinensis), an important non-heading leafy vegetable, and comparison with the genomes of heading type Chinese cabbage and the oilseed form, yellow sarson. Gene presence-absence variation (PAV) and genomic structural variations (SV) were identified, together with single nucleotide polymorphisms (SNPs). The structure and expression of genes for leaf morphology and flowering were compared between the three morphotypes revealing candidate genes for these traits in B. rapa. The pak choi genome assembly and its comparison with other B. rapa genome assemblies provides a valuable resource for the genetic improvement of this important vegetable crop and as a model to understand the diversity of morphological variation across Brassica species.


Subject(s)
Brassica rapa , Brassica , Brassica/genetics , Brassica rapa/genetics , China , Phenotype , Plant Leaves/genetics
7.
New Phytol ; 231(6): 2186-2199, 2021 09.
Article in English | MEDLINE | ID: mdl-34043823

ABSTRACT

Selection for yield during B. rapa breeding may have unintended consequences for other traits, such as flavour. LYH-type (light yellow head) Chinese cabbage (Brassica rapa ssp. pekinensis) and wucai (Brassica rapa L. ssp. chinensis var. rosularis) varieties are becoming popular because of their unique flavour and yellow leaves. However, the molecular mechanism underlying the interplay for these traits remains unknown. We conducted a fine mapping and genome-wide exploration analysis of the leaf yellowing of LYH and wucai, including transgenic plants, to identify causal genes. We identified that BrHISN2, a rate-limiting enzyme in histidine biosynthesis, causes leaf yellowing by destroying LYH chloroplasts. Normal growing Brhisn2 mutant plants became etiolated and senesced at the cotyledon-seedling stage. Sequence variations in the promoter confers cold-dependent expression on BrHISN2, probably resulting in leaf yellowing in LYH and wucai. Insertions of two DRE cis elements and the subsequent recruitment of two CBF2 proteins by the DREs to the promoter provided the cold-induced expression plasticity of BrHISN2 in plants. Both LYH and wucai are farmed in the fall, in which the temperature gradually decreases, therefore the CBF2-BrHISN2 module probably maximises the benefits of gene-environment interaction for breeding. We determined the mechanistic connections of chlorophyll synthesis and the growth-flavour trade-off in these B. rapa varieties.


Subject(s)
Brassica rapa , Brassica , Brassica/metabolism , Brassica rapa/genetics , Gene Expression Regulation, Plant , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
8.
J Exp Bot ; 72(2): 623-635, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33005948

ABSTRACT

Flowering is an important trait in Chinese cabbage, because premature flowering reduces yield and quality of the harvested products. Water deficit, caused by drought or other environmental conditions, induces early flowering. Drought resistance involves global reprogramming of transcription, hormone signaling, and chromatin modification. We show that a histone H4 protein, BrHIS4.A04, physically interacts with a homeodomain protein BrVIN3.1, which was selected during the domestication of late-bolting Chinese cabbage. Over-expression of BrHIS4.A04 resulted in premature flowering under normal growth conditions, but prevented further premature bolting in response to drought. We show that the expression of key abscisic acid (ABA) signaling genes, and also photoperiodic flowering genes was attenuated in BrHIS4.A04-overexpressing (BrHIS4.A04OE) plants under drought conditions. Furthermore, the relative change in H4-acetylation at these gene loci was reduced in BrHIS4.A04OE plants. We suggest that BrHIS4.A04 prevents premature bolting by attenuating the expression of photoperiodic flowering genes under drought conditions, through the ABA signaling pathway. Since BrHIS4.A04OE plants displayed no phenotype related to vegetative or reproductive development under laboratory-induced drought conditions, our findings contribute to the potential fine-tuning of flowering time in crops through genetic engineering without any growth penalty, although more data are necessary under field drought conditions.


Subject(s)
Brassica , Droughts , Brassica/genetics , China , Gene Expression Regulation, Plant , Histones/genetics
9.
Bull Entomol Res ; 111(4): 485-498, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33745467

ABSTRACT

The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.


Subject(s)
Genes, Insect , Metamorphosis, Biological/genetics , Moths/physiology , Transcriptome , Animals , Ecdysterone/biosynthesis , Insect Proteins/genetics , Insect Proteins/metabolism , Juvenile Hormones/biosynthesis , Larva/metabolism , Pupa/metabolism
10.
Theor Appl Genet ; 133(7): 2157-2170, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32399654

ABSTRACT

KEY MESSAGE: Characterization of a novel and valuable CMS system in Brassicarapa. Cytoplasmic male sterility (CMS) is extensively used to produce F1 hybrid seeds in a variety of crops. However, it has not been successfully used in Chinese cabbage (Brassicarapa L. ssp. pekinensis) because of degeneration or temperature sensitivity. Here, we characterize a novel CMS system, BVRC-CMS96, which originated in B.napus cybrid obtained from INRAE, France and transferred by us to B.rapa. Floral morphology and agronomic characteristics indicate that BVRC-CMS96 plants are 100% male sterile and show no degeneration in the BC7 generation, confirming its suitability for commercial use. We also sequenced the BVRC-CMS96 and maintainer line 18BCM mitochondrial genomes. Genomic analyses showed the presence of syntenic blocks and distinct structures between BVRC-CMS96 and 18BCM and the other known CMS systems. We found that BVRC-CMS96 has one orf222 from 'Nap'-type CMS and two copies of orf138 from 'Ogu'-type CMS. We analyzed expression of orf222, orf138, orf261b, and the mitochondrial energy genes (atp6, atp9, and cox1) in flower bud developmental stages S1-S5 and in four floral organs. orf138 and orf222 were both highly expressed in S4, S5-stage buds, calyx, and the stamen. RNA-seq identified differentially expressed mRNAs and lncRNAs (long non-coding RNAs) that were significantly enriched in pollen wall assembly, pollen development, and pollen coat. Our findings suggest that an energy supply disorder caused by orf222/orf138/orf261b may inhibit a series of nuclear pollen development-related genes. Our study shows that BVRC-CMS96 is a valuable CMS system, and our detailed molecular analysis will facilitate its application in Chinese cabbage breeding.


Subject(s)
Brassica/genetics , Genome, Mitochondrial , Plant Infertility/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Chromosome Mapping , Chromosomes, Plant , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Association Studies , Genome, Plant , Open Reading Frames , Plant Proteins/genetics , Pollen , RNA, Plant/genetics , RNA-Seq , Temperature
11.
Theor Appl Genet ; 133(3): 1055-1068, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31919538

ABSTRACT

KEY MESSAGE: QTL mapping plus bulked segregant analysis revealed a major QTL for shoot branching in non-heading Chinese cabbage. The candidate gene was then identified using sequence alignment and expression analysis. Shoot branching is a complex quantitative trait that contributes to plant architecture and ultimately yield. Although many studies have examined branching in grain crops, the genetic control of shoot branching in vegetable crops such as Brassica rapa L. ssp. chinensis remains poorly understood. In this study, we used bulked segregant analysis (BSA) of an F2 population to detect a major quantitative trait locus (QTL) for shoot branching, designated shoot branching 9 (qSB.A09) on the long arm of chromosome A09 in Brassica rapa L. ssp. chinensis. In addition, traditional QTL mapping of the F2 population revealed six QTLs in different regions. Of these, the mapping region on chromosome A09 was consistent with the results of BSA-seq analysis, as well as being stable over the 2-year study period, explaining 19.37% and 22.18% of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants, qSB.A09 was further delimited to a 127-kb genomic region harboring 28 annotated genes. We subsequently identified the GRAS transcription factor gene Bra007056 as a potential candidate gene; Bra007056 is an ortholog of MONOCULM 1 (MOC1), the key gene that controls tillering in rice. Quantitative RT-PCR further revealed that expression of Bra007056 was positively correlated with the shoot branching phenotype. Furthermore, an insertion/deletion marker specific to Bra007056 co-segregated with the shoot branching trait in the F2 populations. Overall, these results provide the basis for elucidating the molecular mechanism of shoot branching in Brassica rapa ssp. chinensis Makino.


Subject(s)
Brassica rapa/genetics , Plant Shoots/genetics , Quantitative Trait Loci , Chromosome Mapping , Gene Ontology , Genes, Plant , Genetic Linkage , Genetic Markers , Genomics , Genotype , High-Throughput Nucleotide Sequencing , INDEL Mutation , Multigene Family , Phenotype , Plant Shoots/growth & development , Polymorphism, Single Nucleotide
12.
Plant Cell Environ ; 42(11): 3044-3060, 2019 11.
Article in English | MEDLINE | ID: mdl-31301234

ABSTRACT

Tipburn is an irreversible physiological disorder of Chinese cabbage that decreases crop value. Because of a strong environmental component, tipburn-resistant cultivars are the only solution, although tipburn resistance genes are unknown in Chinese cabbage. We studied three populations of Chinese cabbage over four growing seasons under field conditions: (a) 194 diverse inbred lines, (b) a doubled haploid (DH100) population, and (c) an F2 population. The 194 lines were genotyped using single nucleotide polymorphism markers, and genome-wide-association mapping showed that 24 gQTLs were significantly associated with tipburn disease index. Analysis of the DH100 and F2 populations identified a shared tipburn-associated locus, gqbTRA06, that was found to cover the region defined by one of the 24 gQTLs. Of 35 genes predicted in the 0.14-Mb quantitative trait locus region, Bra018575 (calreticulin family protein, BrCRT2) showed higher expression levels during disease development. We cloned the two BrCRT2 alleles from tipburn-resistant (BrCRT2R ) and tipburn-susceptible (BrCRT2S ) lines and identified a 51-bp deletion in BrCRT2S . Overexpression of BrCRT2R increased Ca2+ storage in the Arabidopsis crt2 mutant and also reduced cell death in leaf tips and margins under Ca2+ -depleted conditions. Our results suggest that BrCRT2 is a possible candidate gene for controlling tipburn in Chinese cabbage.


Subject(s)
Brassica rapa/genetics , Calreticulin/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Plant Diseases/genetics , Arabidopsis/genetics , Calcium/metabolism , Cell Death , Chromosome Mapping , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Genotype , Phenotype , Plant Leaves , Plant Proteins/genetics , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Analysis, DNA , Sequence Analysis, Protein
13.
Tumour Biol ; 37(9): 12049-12059, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27179963

ABSTRACT

In this study, we investigated the effects of DDR1 on the invasion and metastasis in gastric cancer (GC) via epithelial-mesenchymal transition (EMT). Immunohistochemistry analysis was used to detect DDR1, E-cadherin, and Vimentin expression in GC tissues as well as DDR1 expression in GC cell lines and normal gastric epithelial cells. The relationship between DDR1 expression and EMT in GC cell lines was explored by down and upregulating DDR1 and examining corresponding changes in the expression of EMT-related proteins and in biological characteristics. Furthermore, a nude mice model with a transplantation tumor generating from stably transfected GC cells with DDR1 overexpression was established and performed to further reveal the effects of DDR1 expression on cellular morphology and growth of GC. Our results showed that DDR1 was highly expressed in GC tissues and cell lines compared with adjacent tissues and normal cell line, and its expression was significantly higher in GC having poor differentiation (p < 0.01), advanced depth of wall invasion (p = 0.020), lymph node metastasis (p = 0.0001), liver metastasis (p < 0.01), and high TNM stage (p < 0.01). Western blot analyses revealed that DDR1 overexpression resulted in a significant decrease in the expression of E-cadherin (p < 0.01) and an increase in the expression of Vimentin and Snail (p < 0.01), while knockdown of DDR1 led to opposite outcomes. We further demonstrated that DDR1 overexpression promoted GC cell proliferation (p < 0.05), migration (p < 0.01), and invasion (p < 0.01), and accelerated the growth (p < 0.05) as well as the microvessel formation (p < 0.01) of transplantation tumor in nude mice. Our study establishes that DDR1 enhances invasion and metastasis of gastric cancer via EMT.


Subject(s)
Discoidin Domain Receptor 1/physiology , Epithelial-Mesenchymal Transition , Stomach Neoplasms/pathology , Adult , Aged , Animals , Cadherins/analysis , Cell Line, Tumor , Cell Proliferation , Discoidin Domain Receptor 1/analysis , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Stomach Neoplasms/chemistry , Vimentin/analysis
14.
BMC Genomics ; 16: 492, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26138916

ABSTRACT

BACKGROUND: Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. RESULTS: We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway. CONCLUSIONS: This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.


Subject(s)
Biosynthetic Pathways , Brassica rapa/genetics , Carotenoids/biosynthesis , Plant Proteins/genetics , Brassica rapa/chemistry , Carotenoids/genetics , Chromosomes, Plant , Gene Expression Regulation, Plant , Multigene Family , Organ Specificity , Phylogeny , Synteny
15.
Biosens Bioelectron ; 249: 115931, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38215636

ABSTRACT

Cardiovascular diseases (CVDs) claimed the lives of nearly 21 million people worldwide in 2021, accounting for 30% of global deaths. However, one in five CVD patients is unaware that they have the disease, emphasizing the need for accurate biomarker monitoring. Herein we developed an integrated microfluidic system (IMS) for rapid quantification of four CVD biomarkers, including N-terminal pro B-type natriuretic peptide (NT-proBNP), fibrinogen, cardiac troponin I (cTnI), and C-reactive protein (CRP)- via aptamer-coated interdigitated electrodes (IDE) with integrated circuits (IC) and a self-driven IMS for sample treatment. The device was composed of plasma filtration, metering, and fluidic delay modules, and the former could extract 45% of plasma from a 20-µL blood sample; the metering module could quantify 5 µL of plasma within 90 s. Subsequently, the plasma was transported to a detection chamber, where IC-based IDE sensors made measurements within 5 min. The entire 15-min process allowed us to evaluate biomarkers across a wide dynamic range: NT-proBNP (0.1-10,000 pg/mL), fibrinogen (50-1,000 mg/dL), cTnI (0.1-10,000 pg/mL), and CRP (0.5-9 mg/L). Given that spiked blood samples were measured with reasonable accuracy (>80%), the IMS could see utility in CVD risk assessment and personalized medicine.


Subject(s)
Biosensing Techniques , Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnosis , Microfluidics , Biomarkers , Natriuretic Peptide, Brain , C-Reactive Protein , Fibrinogen , Peptide Fragments
16.
Nat Commun ; 15(1): 5470, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937441

ABSTRACT

Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.


Subject(s)
Brassica rapa , Flowers , Gene Expression Regulation, Plant , Histones , Jumonji Domain-Containing Histone Demethylases , Plant Proteins , Quantitative Trait Loci , Brassica rapa/genetics , Brassica rapa/metabolism , Brassica rapa/growth & development , Brassica rapa/physiology , Flowers/genetics , Flowers/growth & development , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature , Thermotolerance/genetics , Methylation , Plants, Genetically Modified , Chlorophyll/metabolism
17.
Int J Pharm ; 647: 123512, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37839496

ABSTRACT

The bottleneck of traditional anti-tumor therapy is mainly limited by the abnormal microenvironment of tumors. Leaky vessels are difficult for drugs or immune cells to penetrate deep into tumors, but tumor cells can easily escape through which and metastasize to other organs. Reprogramming the tumor microenvironment is one of the main directions for anti-cancer research, among which, tumor vascular normalization has received increasing attention. However, how to control the dose and time of anti-angiogenic drugs for stable vascular normalizing effect limits it for further research. We developed a composite nano delivery system, P-V@MG, with double delivery function of pH-responsibility and sustained drug release. The PHMEMA shell improves amphiphilicity of nano delivery system and prolongs in vivo retention, and releases V@MG in the weakly acidic tumor microenvironment, which slowly release anti-angiogenic drugs, Vandetanib. We found that P-V@MG not only prolonged the normalization window of tumor vascular but also reprogram tumor microenvironment with increased perfusion, immune cells infiltration and relieved hypoxia, which further opened the pathway for other anti-cancer therapeutics. This synergy was proved by the improving anti-tumor efficiency by combination of P-V@MG with the doxorubicin hydrochloride in 4 T1 breast cancer model suggesting the desirable value of pro-vascular normalization nano delivery systems in the field of anti-tumor combination therapy.


Subject(s)
Nanoparticle Drug Delivery System , Neoplasms , Humans , Angiogenesis Inhibitors/pharmacology , Neoplasms/pathology , Doxorubicin , Pharmaceutical Preparations , Tumor Microenvironment
18.
Pest Manag Sci ; 79(4): 1452-1466, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36519662

ABSTRACT

BACKGROUND: The evolution of insect resistance to pesticides poses a continuing threat to sustainable pest management. While much is known about the molecular mechanisms that confer resistance in model insects and few agricultural pests, far less is known about fruit pests. Field-evolved resistance to synthetic insecticides such as lambda-cyhalothrin has been widely documented in Cydia pomonella, a major invasive pest of pome fruit worldwide, and the increased production of cytochrome P450 monooxygenases (P450s) has been linked to resistance in field-evolved resistant populations. However, the underlying molecular mechanisms of P450-mediated insecticide resistance remain largely unknown. RESULTS: Here we found that functional redundancy and preference of metabolism by P450s genes in the CYP9A subfamily confer resistance to lambda-cyhalothrin in Cydia pomonella. A total of four CYP9A genes, including CYP9A61, CYP9A120, CYP9A121, and CYP9A122, were identified from Cydia pomonella. Among these, CYP9A120, CYP9A121, and CYP9A122 were predominantly expressed in the midgut of larvae. The expression levels of these P450 genes were significantly induced by a lethal dose that would kill 10% (LD10 ) of lambda-cyhalothrin and were overexpressed in a field-evolved lambda-cyhalothrin resistant population. Knockdown of CYP9A120 and CYP9A121 by RNA-mediated interference (RNAi) increased the susceptibility of larvae to lambda-cyhalothrin. In vitro assays demonstrated that recombinant P450s expressed in Sf9 cells can metabolize lambda-cyhalothrin, but with functional redundancy and divergence through regioselectivity of metabolism. CYP9A121 preferred to convert lambda-cyhalothrin to 2'-hydroxy-lambda-cyhalothrin, whereas CYP9A122 only generated 4'-hydroxy metabolite of lambda-cyhalothrin. Although possesses a relatively low metabolic capability, CYP9A120 balanced catalytic competence to generate both 2'- and 4'-metabolites. CONCLUSION: Collectively, these results reveal that metabolic functional redundancy of three members of the CYP9A subfamily leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella, thus representing a potential adaptive evolutionary strategy during its worldwide expansion. © 2022 Society of Chemical Industry.


Subject(s)
Insecticides , Moths , Pyrethrins , Animals , Pyrethrins/metabolism , Insecticides/metabolism , Moths/genetics , Nitriles/metabolism , Larva/metabolism , Insecticide Resistance/genetics
19.
Cell Rep ; 42(8): 112938, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37552600

ABSTRACT

Increasing plant resistance to Verticillium wilt (VW), which causes massive losses of Brassica rapa crops, is a challenge worldwide. However, few causal genes for VW resistance have been identified by forward genetic approaches, resulting in limited application in breeding. We combine a genome-wide association study in a natural population and quantitative trait locus mapping in an F2 population and identify that the MYB transcription factor BrMYB108 regulates plant resistance to VW. A 179 bp insertion in the BrMYB108 promoter alters its expression pattern during Verticillium longisporum (VL) infection. High BrMYB108 expression leads to high VL resistance, which is confirmed by disease resistance tests using BrMYB108 overexpression and loss-of-function mutants. Furthermore, we verify that BrMYB108 confers VL resistance by regulating reactive oxygen species (ROS) generation through binding to the promoters of respiratory burst oxidase genes (Rboh). A loss-of-function mutant of AtRbohF in Arabidopsis shows significant susceptibility to VL. Thus, BrMYB108 and its target ROS genes could be used as targets for genetic engineering for VL resistance of B. rapa.


Subject(s)
Brassica rapa , Verticillium , Brassica rapa/genetics , Reactive Oxygen Species , Verticillium/genetics , Genome-Wide Association Study , Plant Breeding , Plant Diseases/genetics , Disease Resistance/genetics
20.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903976

ABSTRACT

Carotenoids were synthesized in the plant cells involved in photosynthesis and photo-protection. In humans, carotenoids are essential as dietary antioxidants and vitamin A precursors. Brassica crops are the major sources of nutritionally important dietary carotenoids. Recent studies have unraveled the major genetic components in the carotenoid metabolic pathway in Brassica, including the identification of key factors that directly participate or regulate carotenoid biosynthesis. However, recent genetic advances and the complexity of the mechanism and regulation of Brassica carotenoid accumulation have not been reviewed. Herein, we reviewed the recent progress regarding Brassica carotenoids from the perspective of forward genetics, discussed biotechnological implications and provided new perspectives on how to transfer the knowledge of carotenoid research in Brassica to the crop breeding process.

SELECTION OF CITATIONS
SEARCH DETAIL