Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731488

ABSTRACT

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Subject(s)
Chromium , Hypoglycemic Agents , alpha-Glucosidases , beta-Glucans , Humans , Chromium/chemistry , Chromium/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , beta-Glucans/chemistry , beta-Glucans/pharmacology , Hep G2 Cells , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Insulin Resistance , Glucose/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Avena/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
2.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144522

ABSTRACT

The novel biochanin A-chromium(III) complex was synthesized by chelating chromium with biochanin A (BCA). The structure of the complex was determined and the complex ([CrBCA3]) was composed of chromium(III) and three ligands, and the chromium content was 55 µg/mg. The hypoglycemic activity of the complex was studied in db/db mice and C57 mice. The sub-acute toxicity test of the complex was carried out by the maximum limit method in KM mice. The hypoglycemic activity showed that the complex could reduce the weight of db/db mice and lower the fasting blood glucose and random blood glucose levels. The complex also improved the organ index, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) results of db/db mice, and some of the indicators were similar to those of the positive control group after treatment with the complex. The histopathology study showed significant improvements in the liver, kidney, pancreas and skeletal muscle compared with the diabetes model group. The complex also showed a significant improvement in serum biochemical indices and antioxidant enzyme activities, as well as glycogen levels. The sub-acute toxicity study showed that the complex did not cause death or any dangerous symptoms during the study. In addition, the sub-acute toxicity study showed that the complex had no significant effect on the serum biochemical indices, antioxidant capacity and organs of normal mice. This study showed that [CrBCA3] had good hypoglycemic activity in vivo and had no sub-acute toxicity. This work provides an important reference for the development of functional hypoglycemic foods or drugs.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Animals , Antioxidants/therapeutic use , Blood Glucose , Chromium/chemistry , Chromium/toxicity , Diabetes Mellitus, Experimental/pathology , Genistein , Glycogen , Hypoglycemic Agents/chemistry , Insulin/therapeutic use , Insulins/therapeutic use , Mice
3.
Molecules ; 27(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014535

ABSTRACT

Soybean is widely used as a kind of bean for daily consumption. Chickpea is increasingly utilised because of its good healthcare function. At present, using chickpeas could have better results than soybeans in some areas. Previous studies of the two legumes focused on certain components and failed to fully reveal the differences between the two legumes. Thus, understanding the comprehensive similarities and differences between the two legumes is necessary to apply and develop these legumes effectively. In this study, we performed a UPLC-ESI-MS/MS-based widely targeted metabolomics analysis on two legumes. A total of 776 metabolites (including primary metabolites and secondary metabolites) were detected, which were divided into more than a dozen broad categories. The differential analysis of these metabolites showed that there were 480 metabolites with significant differences in relative contents between the two legumes. Compared with soybean, the expression of 374 metabolites of chickpea was down-regulated and that of 106 metabolites was up-regulated. The metabolic pathway analysis showed significant differences in the flavonoids biosynthesis, phenylpropanoid biosynthesis, linoleic acid metabolism and alkaloid biosynthesis between the two legumes. The advantages and applicability of the two kinds of legumes were confirmed through the analysis of anti-diabetic components. Moreover, some novel compounds (with contents higher than that of soybean) with hypoglycaemic activity were found in chickpea. This study provides an important reference for the in-depth study and comparative application of soybean and chickpea.


Subject(s)
Cicer , Diabetes Mellitus , Fabaceae , Metabolomics/methods , Glycine max , Tandem Mass Spectrometry
4.
Molecules ; 20(9): 17016-40, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26393547

ABSTRACT

A set of novel isoflavone derivatives from chickpea were synthesized. The structures of derivatives were identified by proton nuclear magnetic resonance (¹H-NMR), carbon-13 ((13)C)-NMR and mass spectrometry (MS) spectral analyses. Their anti-diabetic activities were evaluated using an insulin-resistant (IR) HepG2 cell model. Additionally, the structure-activity relationships of these derivatives were briefly discussed. Compounds 1c, 2h, 3b, and 5 and genistein exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells. In addition, the combinations of genistein, 2h, and 3b (combination 6) and of 3b, genistein, and 1c (combination 10) exhibited better anti-diabetic activity than the individual compounds. At the same dosage, there was no difference in effect between the combination 10 and the positive control (p > 0.05). Aditionally, we found the differences between the combination 10 and combination 6 for the protective effect of HUVEC (human umbilical vein endothelial cells) under high glucose concentration. The protective effects of combination 10 was stronger than combination 6, which suggested that combination 10 may have a better hypoglycemic activity in future studies. This study provides useful clues for the further design and discovery of anti-diabetic agents.


Subject(s)
Cicer/chemistry , Hypoglycemic Agents/chemical synthesis , Isoflavones/chemical synthesis , Isoflavones/pharmacology , Plant Extracts/chemistry , Genistein/pharmacology , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Isoflavones/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Structure-Activity Relationship
5.
Int J Biol Macromol ; : 133425, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936582

ABSTRACT

Yeast ß-glucan (BYG) possesses extremely low solubility that has limited its applications. In this study, we hydrolyzed BYG using snail enzyme to obtain hydrolyzed yeast ß-glucan (HBYG) with desirable water solubility and hypoglycemic activity. On the basis of HBYG, HBYG­chromium(III) complex (HBYG-Cr) was synthesized. The molecular weight of the complex was 4.41 × 104 Da, and the content of trivalent chromium was 8.95 %. The hydroxyl groups of HBYG participated in the coordination and formed the chromium complex. The space conformations of HBYG exhibited remarkable changes after complex formation. HBYG-Cr existed mainly in an amorphous state and presented good dispersibility, and the surface was uneven. The hypoglycemic activity of HBYG-Cr was studied in db/db and C57 mice. The results showed that HBYG-Cr had good hypoglycemic activity. Histopathological studies demonstrated that the liver, kidney, pancreas, and skeletal muscle in the treatment group were significantly improved compared with those in the diabetic model group. The sub-acute toxicity of HBYG-Cr was studied in KM mice and the results indicated that the complex did not cause adverse reactions or toxic side effects. This study broadened the application of yeast ß-glucan and provided an important reference for the development of hypoglycemic functional foods and drugs.

6.
Drug Des Devel Ther ; 14: 977-992, 2020.
Article in English | MEDLINE | ID: mdl-32184567

ABSTRACT

PURPOSE: This study aimed to synthesize twin drugs from cinnamic acid compounds, caffeic acid (CFA) and ferulic acid (FLA), which can antagonize endothelin-1 (ET-1) with telmisartan through ester bonds. Moreover, the antihypertensive effect of telmisartan and its influence on blood pressure variability (BPV) were enhanced, and the bioavailability of caffeic acid and ferulic acid was improved. METHODS: Six twin drugs, which were the target compounds, were synthesized. Hypertensive rats (SHR) and conscious sinoaortic-denervated (SAD) rats were spontaneously used as models for pharmacodynamic research to study the antihypertensive efficacy of these twin drugs. Wistar rats were employed as pharmacokinetic research models to investigate the pharmacokinetics of the target compounds via intragastric administration. Cellular pharmacodynamic research was also conducted on the antagonistic action on Ang II-AT1, ETA and ETB receptor. RESULTS: Compound 1a was determined as the best antihypertensive twin drug and thus was further studied for its effect on BPV. Compared with that of telmisartan, the antihypertensive effect of compound 1a was improved (p<0.05), and the BPV was reduced (p<0.05). The bioavailability of caffeic acid and ferulic acid after hydrolysis from twin drugs could be increased to varying degrees, and the differences of the main pharmacokinetic parameters among the different forms of caffeic acid and ferulic acid were statistically significant (p<0.05 or p<0.01). Compound 1a had the best antagonistic effect on the Ang II-AT1 receptor. However, the IC50 of Lps-2 was still two orders of magnitude higher than that of the positive drug telmisartan. Hence, the twin drugs worked by metabolizing and regenerating telmisartan and caffeic acid or ferulic acid in the body. CONCLUSION: The synthesized twin drugs improved telmisartan's antihypertensive effects, significantly decreased BPV in SAD rats and increased the bioavailability of caffeic acid and ferulic acid. This study serves as a basis for the development of new angiotensin receptor blocker (ARB) in the future and a reference for the development of new drugs to antagonize ET-1.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Antihypertensive Agents/pharmacology , Caffeic Acids/pharmacology , Coumaric Acids/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Telmisartan/pharmacology , Angiotensin Receptor Antagonists/chemical synthesis , Angiotensin Receptor Antagonists/chemistry , Animals , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Blood Pressure/drug effects , Caffeic Acids/chemistry , Coumaric Acids/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Molecular Structure , Rats , Rats, Inbred SHR , Rats, Wistar , Structure-Activity Relationship , Telmisartan/chemistry
7.
J Trace Elem Med Biol ; 62: 126606, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32650064

ABSTRACT

BACKGROUND: In this study, chromium (III) complex was synthesized from genistein (GEN) which had good hypoglycemic activity and inorganic chromium (III) element, and its hypoglycemic activity and sub-acute toxicity were studied. METHODS: The genistein-chromium (III) complex was synthesized by chelating chromium with genistein in ethanol and its structure was determined by LC-MS, atomic absorption spectroscopy, UV-vis spectroscopy, infrared spectroscopy, elemental and thermodynamic analysis. The anti-diabetic activity of the complex was assessed in db/db mice and C57 mice by daily oral gavage for 4 weeks. The sub-acute toxicity test was carried out on KM mice with this complex. RESULTS: The molecular structure of this complex was inferred as a complex [CrGEN3] formed by three ligands and one chromium element. The complex could significantly improve the body weight of db/db mice, fasting blood glucose, random blood glucose, organ index, glycogen levels and the performance of OGTT (Oral Glucose Tolerance Test) and ITT (Insulin Tolerance Test) in db/db mice (p < 0.05). The morphology of liver, kidney, pancreas and skeletal muscle also had obviously improvement and repairment. Effects on serum indices and antioxidant enzymes activities of db/db mice showed that the serum profiles and antioxidant ability of complex group had significant improvement compared with the diabetic control group (p < 0.05 or p < 0.01), and some indices even returned to normal levels. In addition, this complex did not produce any hazardous symptoms or deaths in sub-acute toxicity test. High dose of [CrGEN3] had no significant influence on serum indices and antioxidant capacity in normal mice, and the organ tissues maintained organized and integrity in the sub-acute toxicity study. CONCLUSION: The study of the genistein-chromium (III) complex showed that the complex had good hypoglycemic activity in vivo, and did not have the potential toxicity. These results would provide an important reference for the development of functional hypoglycemic foods or pharmaceuticals.


Subject(s)
Chromium/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Genistein/therapeutic use , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Chromatography, Liquid , Glucose Tolerance Test , Hypoglycemic Agents/therapeutic use , Mass Spectrometry , Mice
8.
Free Radic Biol Med ; 124: 51-60, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29803806

ABSTRACT

PURPOSE: Excessive oxidative stress (OS) leads to cellular dysfunctions and cell death and constitutes a major cause of male infertility. However, the etiologies of increased reactive oxygen species (ROS) in male infertility is not fully understood. One major limitation is the lack of an in vivo imaging system that can be used to effectively study the impact of excessive ROS in the testis. Recently, we discovered that the hepatocellular carcinoma reporter (HCR) mice previously generated in our laboratory also expressed luciferase in the spermatids of the testis. The goal of the current study is to use the HCR mice to detect OS in the testis and to investigate the potential use of this new system in studying OS-induced male infertility. EXPERIMENTAL DESIGN: Bioluminescence imaging (BLI) was performed in HCR mice that were treated with peroxy caged luciferin-1 (PCL-1), an OS reporter, to establish a new mouse model for in vivo monitoring of the OS status inside the male reproductive tract. Subsequently, the effect of acetaminophen (APAP) overdose on the OS inside the testis and male fertility were determined. Lastly, APAP was co-administered with glutathione, an antioxidant reagent, to test if the HCR mice can serve as a model for the effective and rapid assessment of the potency of individual agents in modifying the OS inside the mouse testis. RESULTS: The OS level in the testis in the HCR mice was readily detected by BLI. The use of this new model led to the discovery that APAP caused a sudden rise of OS in the testis and was a potent toxicant for the male reproductive system. Moreover, administration of glutathione was effective in preventing the APAP-induced elevation of OS and in ameliorating all of the OS-induced anomalies in the testis. CONCLUSIONS: The HCR mice represent an excellent model for monitoring OS change in the mouse testis by real time BLI. APAP is a potent male reproductive toxicant and APAP-treated mice represent a valid model for OS-induced male infertility. This model can be used to study OS-induced damage in male reproductive tract and in assessing the effects of therapeutic agents on the relative levels of OS and male fertility.


Subject(s)
Acetaminophen/pharmacology , Carcinoma, Hepatocellular/complications , Infertility, Male/pathology , Luminescent Agents/chemistry , Optical Imaging/methods , Oxidative Stress , Testis/pathology , Analgesics, Non-Narcotic/pharmacology , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Glutathione/metabolism , Infertility, Male/diagnostic imaging , Infertility, Male/etiology , Liver Neoplasms/complications , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Luminescent Measurements , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Testis/diagnostic imaging , Testis/drug effects
9.
Article in English | MEDLINE | ID: mdl-28421123

ABSTRACT

The chickpea, a food and medicine used by the people of Xinjiang, has a beneficial hypoglycemic effect. To better utilize this national resource and develop hypoglycemic agents from components of the chickpea, a series of new derivatives of isoflavone compounds from the chickpea were synthesized. An insulin-resistant (IR) HepG2 cell model was used to screen the hypoglycemic activities of these compounds. And the structure-activity relationships of these compounds were explored. Additionally, several combinations of these compound displayed higher hypoglycemic activity than any single compound, and they had similar hypoglycemic activity to that of the positive control group (p > 0.05). In addition, combination 3 and combination 6 exerted different effects on the insulin sensitivity of H4IIE cells stimulated with resistin. And the results indicated that combination 3 would have higher hypoglycemic activity. These findings demonstrate the characteristics of multiple components and targets of Chinese herbal medicine. This evidence may provide new ideas for the development of hypoglycemic drugs.

SELECTION OF CITATIONS
SEARCH DETAIL