Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Genet Epidemiol ; 45(1): 4-15, 2021 02.
Article in English | MEDLINE | ID: mdl-32964493

ABSTRACT

Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.


Subject(s)
Carotid Stenosis , Genome-Wide Association Study , Electronic Health Records , Genetic Predisposition to Disease , Genomics , Humans , Lipoprotein(a)/genetics , Models, Genetic , Polymorphism, Single Nucleotide
2.
BMC Genomics ; 23(1): 338, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35501711

ABSTRACT

BACKGROUND: Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. RESULTS: We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. CONCLUSION: This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution.


Subject(s)
Chromatin , Leukocytes, Mononuclear , Lipopolysaccharides , Transcriptome , Animals , Cattle/immunology , Chromatin/genetics , Chromatin/metabolism , Female , Immunity, Innate , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Lymphocytes/metabolism , NF-kappa B/metabolism
3.
Hum Genet ; 141(11): 1697-1704, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35488921

ABSTRACT

Genomic medicine aims to improve health using the individual genomic data of people to inform care. While clinical utility of genomic medicine in many monogenic, Mendelian disorders is amply demonstrated, clinical utility is less evident in polygenic traits, e.g., coronary artery disease or breast cancer. Polygenic risk scores (PRS) are subsets of individual genotypes designed to capture heritability of common traits, and hence to allow the stratification of risk of the trait in a population. We systematically reviewed the PubMed database for unequivocal evidence of clinical utility of polygenic risk scores, using stringent inclusion and exclusion criteria. While we identified studies demonstrating clinical validity in conditions where medical intervention based on a PRS is likely to benefit patient outcome, we did not identify a single study demonstrating unequivocally such a benefit, i.e. clinical utility. We conclude that while the routine use of PRSs hold great promise, translational research is still needed before they should enter mainstream clinical practice.


Subject(s)
Genetic Predisposition to Disease , Genomic Medicine , Genomics , Humans , Multifactorial Inheritance/genetics , Risk Factors
4.
Genet Epidemiol ; 43(1): 63-81, 2019 02.
Article in English | MEDLINE | ID: mdl-30298529

ABSTRACT

The Electronic Medical Records and Genomics (eMERGE) network is a network of medical centers with electronic medical records linked to existing biorepository samples for genomic discovery and genomic medicine research. The network sought to unify the genetic results from 78 Illumina and Affymetrix genotype array batches from 12 contributing medical centers for joint association analysis of 83,717 human participants. In this report, we describe the imputation of eMERGE results and methods to create the unified imputed merged set of genome-wide variant genotype data. We imputed the data using the Michigan Imputation Server, which provides a missing single-nucleotide variant genotype imputation service using the minimac3 imputation algorithm with the Haplotype Reference Consortium genotype reference set. We describe the quality control and filtering steps used in the generation of this data set and suggest generalizable quality thresholds for imputation and phenotype association studies. To test the merged imputed genotype set, we replicated a previously reported chromosome 6 HLA-B herpes zoster (shingles) association and discovered a novel zoster-associated loci in an epigenetic binding site near the terminus of chromosome 3 (3p29).


Subject(s)
Electronic Health Records , Genetic Predisposition to Disease , Genome-Wide Association Study , Herpes Zoster/genetics , Algorithms , Black People/genetics , Chromosomes, Human/genetics , Female , Haplotypes/genetics , Homozygote , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , White People/genetics
5.
Am J Hum Genet ; 100(3): 414-427, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28190457

ABSTRACT

Individuals participating in biobanks and other large research projects are increasingly asked to provide broad consent for open-ended research use and widespread sharing of their biosamples and data. We assessed willingness to participate in a biobank using different consent and data sharing models, hypothesizing that willingness would be higher under more restrictive scenarios. Perceived benefits, concerns, and information needs were also assessed. In this experimental survey, individuals from 11 US healthcare systems in the Electronic Medical Records and Genomics (eMERGE) Network were randomly allocated to one of three hypothetical scenarios: tiered consent and controlled data sharing; broad consent and controlled data sharing; or broad consent and open data sharing. Of 82,328 eligible individuals, exactly 13,000 (15.8%) completed the survey. Overall, 66% (95% CI: 63%-69%) of population-weighted respondents stated they would be willing to participate in a biobank; willingness and attitudes did not differ between respondents in the three scenarios. Willingness to participate was associated with self-identified white race, higher educational attainment, lower religiosity, perceiving more research benefits, fewer concerns, and fewer information needs. Most (86%, CI: 84%-87%) participants would want to know what would happen if a researcher misused their health information; fewer (51%, CI: 47%-55%) would worry about their privacy. The concern that the use of broad consent and open data sharing could adversely affect participant recruitment is not supported by these findings. Addressing potential participants' concerns and information needs and building trust and relationships with communities may increase acceptance of broad consent and wide data sharing in biobank research.


Subject(s)
Biological Specimen Banks/ethics , Information Dissemination/ethics , Informed Consent/ethics , Public Opinion , Adolescent , Adult , Aged , Biomedical Research/ethics , Electronic Health Records/ethics , Female , Genome, Human , Genomics , Humans , Male , Middle Aged , Privacy , Socioeconomic Factors , United States , Young Adult
6.
BMC Med ; 17(1): 135, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31311600

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver illness with a genetically heterogeneous background that can be accompanied by considerable morbidity and attendant health care costs. The pathogenesis and progression of NAFLD is complex with many unanswered questions. We conducted genome-wide association studies (GWASs) using both adult and pediatric participants from the Electronic Medical Records and Genomics (eMERGE) Network to identify novel genetic contributors to this condition. METHODS: First, a natural language processing (NLP) algorithm was developed, tested, and deployed at each site to identify 1106 NAFLD cases and 8571 controls and histological data from liver tissue in 235 available participants. These include 1242 pediatric participants (396 cases, 846 controls). The algorithm included billing codes, text queries, laboratory values, and medication records. Next, GWASs were performed on NAFLD cases and controls and case-only analyses using histologic scores and liver function tests adjusting for age, sex, site, ancestry, PC, and body mass index (BMI). RESULTS: Consistent with previous results, a robust association was detected for the PNPLA3 gene cluster in participants with European ancestry. At the PNPLA3-SAMM50 region, three SNPs, rs738409, rs738408, and rs3747207, showed strongest association (best SNP rs738409 p = 1.70 × 10- 20). This effect was consistent in both pediatric (p = 9.92 × 10- 6) and adult (p = 9.73 × 10- 15) cohorts. Additionally, this variant was also associated with disease severity and NAFLD Activity Score (NAS) (p = 3.94 × 10- 8, beta = 0.85). PheWAS analysis link this locus to a spectrum of liver diseases beyond NAFLD with a novel negative correlation with gout (p = 1.09 × 10- 4). We also identified novel loci for NAFLD disease severity, including one novel locus for NAS score near IL17RA (rs5748926, p = 3.80 × 10- 8), and another near ZFP90-CDH1 for fibrosis (rs698718, p = 2.74 × 10- 11). Post-GWAS and gene-based analyses identified more than 300 genes that were used for functional and pathway enrichment analyses. CONCLUSIONS: In summary, this study demonstrates clear confirmation of a previously described NAFLD risk locus and several novel associations. Further collaborative studies including an ethnically diverse population with well-characterized liver histologic features of NAFLD are needed to further validate the novel findings.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Adult , Aged , Body Mass Index , Case-Control Studies , Community Networks/organization & administration , Community Networks/statistics & numerical data , Disease Progression , Electronic Health Records/organization & administration , Electronic Health Records/statistics & numerical data , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics/organization & administration , Genomics/statistics & numerical data , Humans , Lipase/genetics , Male , Membrane Proteins/genetics , Middle Aged , Morbidity , Non-alcoholic Fatty Liver Disease/epidemiology , Phenotype , Polymorphism, Single Nucleotide , Signal Transduction/genetics
7.
BMC Genet ; 20(1): 46, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31096910

ABSTRACT

BACKGROUND: Single-nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) and their target binding sites affect miRNA function and are involved in biological processes and diseases, including bovine mastitis, a frequent inflammatory disease. Our previous study has shown that bta-miR-2899 is significantly upregulated in the mammary gland tissue of mastitis-infected cow than that of healthy cows. RESULTS: In the present study, we used a customized miRNAQTLsnp software and identified 5252 SNPs in 691 bovine pre-miRNAs, which are also located within the quantitative trait loci (QTLs) that are associated with mastitis and udder conformation-related traits. Using luciferase assay in the bovine mammary epithelial cells, we confirmed a candidate SNP (rs109462250, g. 42,198,087 G > A) in the seed region of bta-miR-2899 located in the somatic cell score (SCS)-related QTL (Chr.18: 33.9-43.9 Mbp), which affected the interaction of bta-miR-2899 and its putative target Spi-1 proto-oncogene (SPI1), a pivotal regulator in the innate and adaptive immune systems. Quantitative real-time polymerase chain reaction results showed that the relative expression of SPI1 in the mammary gland of AA genotype cows was significantly higher than that of GG genotype cows. The SNP genotypes were associated with SCS in Holstein cows. CONCLUSIONS: Altogether, miRNA-related SNPs, which influence the susceptibility to mastitis, are one of the plausible mechanisms underlying mastitis via modulating the interaction of miRNAs and immune-related genes. These miRNA-QTL-SNPs, such as the SNP (rs109462250) of bta-miR-2899 may have implication for the mastitis resistance breeding program in Holstein cattle.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Mastitis, Bovine/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , 3' Untranslated Regions , Animals , Cattle , Computational Biology/methods , Female , Genotype , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Workflow
8.
J Therm Biol ; 69: 139-148, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037375

ABSTRACT

Skin temperature is a challenging parameter to predict due to the complex interaction of physical and physiological variations. Previous studies concerning the correlation of regional physiological characteristics and body composition showed that obese people have higher hand skin temperature compared to the normal weight people. To predict hand skin temperature in a different environment, a two-node hand thermophysiological model was developed and validated with published experimental data. In addition, a sensitivity analysis was performed which showed that the variations in skin blood flow and blood temperature are most influential on hand skin temperature. The hand model was applied to simulate the hand skin temperature of the obese and normal weight subgroup in different ambient conditions. Higher skin blood flow and blood temperature were used in the simulation of obese people. The results showed a good agreement with experimental data from the literature, with the maximum difference of 0.31°C. If the difference between blood flow and blood temperature of obese and normal weight people was not taken into account, the hand skin temperature of obese people was predicted with an average deviation of 1.42°C. In conclusion, when modelling hand skin temperatures, it should be considered that regional skin temperature distribution differs in obese and normal weight people.


Subject(s)
Hand/physiology , Skin Temperature , Body Composition , Body Temperature , Body Temperature Regulation , Female , Hand/physiopathology , Humans , Male , Models, Biological , Obesity/physiopathology , Skin/blood supply
9.
Am J Hum Genet ; 93(4): 661-71, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24094743

ABSTRACT

Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10(-5). Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r(2) > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10(-8)) and DHX34 (rs4802349, p = 1.2 × 10(-7)), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci.


Subject(s)
Black or African American/genetics , Body Mass Index , Genome, Human , Genome-Wide Association Study/methods , Obesity/genetics , Adult , Aged , Aged, 80 and over , Female , Genetic Loci , Genetic Predisposition to Disease , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Obesity/ethnology , Polymorphism, Single Nucleotide , Young Adult
10.
BMC Med Res Methodol ; 16(1): 162, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27881091

ABSTRACT

BACKGROUND: As biobanks play an increasing role in the genomic research that will lead to precision medicine, input from diverse and large populations of patients in a variety of health care settings will be important in order to successfully carry out such studies. One important topic is participants' views towards consent and data sharing, especially since the 2011 Advanced Notice of Proposed Rulemaking (ANPRM), and subsequently the 2015 Notice of Proposed Rulemaking (NPRM) were issued by the Department of Health and Human Services (HHS) and Office of Science and Technology Policy (OSTP). These notices required that participants consent to research uses of their de-identified tissue samples and most clinical data, and allowing such consent be obtained in a one-time, open-ended or "broad" fashion. Conducting a survey across multiple sites provides clear advantages to either a single site survey or using a large online database, and is a potentially powerful way of understanding the views of diverse populations on this topic. METHODS: A workgroup of the Electronic Medical Records and Genomics (eMERGE) Network, a national consortium of 9 sites (13 separate institutions, 11 clinical centers) supported by the National Human Genome Research Institute (NHGRI) that combines DNA biorepositories with electronic medical record (EMR) systems for large-scale genetic research, conducted a survey to understand patients' views on consent, sample and data sharing for future research, biobank governance, data protection, and return of research results. RESULTS: Working across 9 sites to design and conduct a national survey presented challenges in organization, meeting human subjects guidelines at each institution, and survey development and implementation. The challenges were met through a committee structure to address each aspect of the project with representatives from all sites. Each committee's output was integrated into the overall survey plan. A number of site-specific issues were successfully managed allowing the survey to be developed and implemented uniformly across 11 clinical centers. CONCLUSIONS: Conducting a survey across a number of institutions with different cultures and practices is a methodological and logistical challenge. With a clear infrastructure, collaborative attitudes, excellent lines of communication, and the right expertise, this can be accomplished successfully.


Subject(s)
Confidentiality , Electronic Health Records/statistics & numerical data , Genome-Wide Association Study/statistics & numerical data , Information Dissemination/methods , Surveys and Questionnaires , Humans , Informed Consent , National Human Genome Research Institute (U.S.) , Patient Participation , Patient Rights , United States
11.
PLoS Genet ; 9(1): e1003171, 2013.
Article in English | MEDLINE | ID: mdl-23341774

ABSTRACT

Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3 × 10(-6)) had not been highlighted in previous studies. While rs56137030was correlated at r(2)>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations.


Subject(s)
Black or African American/genetics , Body Mass Index , Obesity/genetics , Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Alleles , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Chromosome Mapping , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Metagenomics , Middle Aged , Racial Groups/genetics , White People/genetics
12.
JAMA ; 315(1): 47-57, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26746457

ABSTRACT

IMPORTANCE: Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants. OBJECTIVE: To determine the clinical phenotypes from EMRs for individuals with variants designated as pathogenic by expert review in arrhythmia susceptibility genes. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study included 2022 individuals recruited for nonantiarrhythmic drug exposure phenotypes from October 5, 2012, to September 30, 2013, for the Electronic Medical Records and Genomics Network Pharmacogenomics project from 7 US academic medical centers. Variants in SCN5A and KCNH2, disease genes for long QT and Brugada syndromes, were assessed for potential pathogenicity by 3 laboratories with ion channel expertise and by comparison with the ClinVar database. Relevant phenotypes were determined from EMRs, with data available from 2002 (or earlier for some sites) through September 10, 2014. EXPOSURES: One or more variants designated as pathogenic in SCN5A or KCNH2. MAIN OUTCOMES AND MEASURES: Arrhythmia or electrocardiographic (ECG) phenotypes defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, ECG data, and manual EMR review. RESULTS: Among 2022 study participants (median age, 61 years [interquartile range, 56-65 years]; 1118 [55%] female; 1491 [74%] white), a total of 122 rare (minor allele frequency <0.5%) nonsynonymous and splice-site variants in 2 arrhythmia susceptibility genes were identified in 223 individuals (11% of the study cohort). Forty-two variants in 63 participants were designated potentially pathogenic by at least 1 laboratory or ClinVar, with low concordance across laboratories (Cohen κ = 0.26). An ICD-9 code for arrhythmia was found in 11 of 63 (17%) variant carriers vs 264 of 1959 (13%) of those without variants (difference, +4%; 95% CI, -5% to +13%; P = .35). In the 1270 (63%) with ECGs, corrected QT intervals were not different in variant carriers vs those without (median, 429 vs 439 milliseconds; difference, -10 milliseconds; 95% CI, -16 to +3 milliseconds; P = .17). After manual review, 22 of 63 participants (35%) with designated variants had any ECG or arrhythmia phenotype, and only 2 had corrected QT interval longer than 500 milliseconds. CONCLUSIONS AND RELEVANCE: Among laboratories experienced in genetic testing for cardiac arrhythmia disorders, there was low concordance in designating SCN5A and KCNH2 variants as pathogenic. In an unselected population, the putatively pathogenic genetic variants were not associated with an abnormal phenotype. These findings raise questions about the implications of notifying patients of incidental genetic findings.


Subject(s)
Arrhythmias, Cardiac/genetics , Electronic Health Records , Ether-A-Go-Go Potassium Channels/genetics , Genetic Variation , Laboratories/standards , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phenotype , Aged , Aged, 80 and over , Alleles , Arrhythmias, Cardiac/ethnology , Arrhythmias, Cardiac/physiopathology , Brugada Syndrome/genetics , ERG1 Potassium Channel , Female , Genetic Predisposition to Disease , Genetic Testing/standards , Genomics , Heterozygote , Humans , Incidental Findings , Male , Middle Aged , Mutation, Missense , Prospective Studies , Random Allocation , Statistics, Nonparametric , Young Adult
13.
Hum Mol Genet ; 22(10): 2119-27, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23314186

ABSTRACT

With white blood cell count emerging as an important risk factor for chronic inflammatory diseases, genetic associations of differential leukocyte types, specifically monocyte count, are providing novel candidate genes and pathways to further investigate. Circulating monocytes play a critical role in vascular diseases such as in the formation of atherosclerotic plaque. We performed a joint and ancestry-stratified genome-wide association analyses to identify variants specifically associated with monocyte count in 11 014 subjects in the electronic Medical Records and Genomics Network. In the joint and European ancestry samples, we identified novel associations in the chromosome 16 interferon regulatory factor 8 (IRF8) gene (P-value = 2.78×10(-16), ß = -0.22). Other monocyte associations include novel missense variants in the chemokine-binding protein 2 (CCBP2) gene (P-value = 1.88×10(-7), ß = 0.30) and a region of replication found in ribophorin I (RPN1) (P-value = 2.63×10(-16), ß = -0.23) on chromosome 3. The CCBP2 and RPN1 region is located near GATA binding protein2 gene that has been previously shown to be associated with coronary heart disease. On chromosome 9, we found a novel association in the prostaglandin reductase 1 gene (P-value = 2.29×10(-7), ß = 0.16), which is downstream from lysophosphatidic acid receptor 1. This region has previously been shown to be associated with monocyte count. We also replicated monocyte associations of genome-wide significance (P-value = 5.68×10(-17), ß = -0.23) at the integrin, alpha 4 gene on chromosome 2. The novel IRF8 results and further replications provide supporting evidence of genetic regions associated with monocyte count.


Subject(s)
Atherosclerosis/blood , Atherosclerosis/genetics , Chromosomes, Human/genetics , Genome-Wide Association Study , Leukocyte Count , Adult , Aged , Chromosomes, Human/metabolism , Female , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Humans , Integrin alpha4/genetics , Integrin alpha4/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Monocytes , Mutation, Missense , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism
14.
Circulation ; 127(13): 1377-85, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23463857

ABSTRACT

BACKGROUND: ECG QRS duration, a measure of cardiac intraventricular conduction, varies ≈2-fold in individuals without cardiac disease. Slow conduction may promote re-entrant arrhythmias. METHODS AND RESULTS: We performed a genome-wide association study to identify genomic markers of QRS duration in 5272 individuals without cardiac disease selected from electronic medical record algorithms at 5 sites in the Electronic Medical Records and Genomics (eMERGE) network. The most significant loci were evaluated within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium QRS genome-wide association study meta-analysis. Twenty-three single-nucleotide polymorphisms in 5 loci, previously described by CHARGE, were replicated in the eMERGE samples; 18 single-nucleotide polymorphisms were in the chromosome 3 SCN5A and SCN10A loci, where the most significant single-nucleotide polymorphisms were rs1805126 in SCN5A with P=1.2×10(-8) (eMERGE) and P=2.5×10(-20) (CHARGE) and rs6795970 in SCN10A with P=6×10(-6) (eMERGE) and P=5×10(-27) (CHARGE). The other loci were in NFIA, near CDKN1A, and near C6orf204. We then performed phenome-wide association studies on variants in these 5 loci in 13859 European Americans to search for diagnoses associated with these markers. Phenome-wide association study identified atrial fibrillation and cardiac arrhythmias as the most common associated diagnoses with SCN10A and SCN5A variants. SCN10A variants were also associated with subsequent development of atrial fibrillation and arrhythmia in the original 5272 "heart-healthy" study population. CONCLUSIONS: We conclude that DNA biobanks coupled to electronic medical records not only provide a platform for genome-wide association study but also may allow broad interrogation of the longitudinal incidence of disease associated with genetic variants. The phenome-wide association study approach implicated sodium channel variants modulating QRS duration in subjects without cardiac disease as predictors of subsequent arrhythmias.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Genetic Markers/genetics , Genome-Wide Association Study/methods , Heart Conduction System/physiopathology , Heart Rate/genetics , Adult , Aged , Aged, 80 and over , Arrhythmias, Cardiac/epidemiology , Female , Heart Conduction System/metabolism , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics , Risk Factors
15.
BMC Genomics ; 15: 839, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25273983

ABSTRACT

BACKGROUND: Proteomics and bioinformatics may help us better understand the biological adaptations occurring during bovine mastitis. This systems approach also could help identify biomarkers for monitoring clinical and subclinical mastitis. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to screen potential proteins associated with mastitis at late infectious stage. RESULTS: Healthy and mastitic cows' mammary gland tissues were analyzed using iTRAQ combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Bioinformatics analyses of differentially expressed proteins were performed by means of Gene Ontology, metabolic pathways, transcriptional regulation networks using Blast2GO software, the Dynamic Impact Approach and Ingenuity Pathway Analysis. At a false discovery rate of 5%, a total of 768 proteins were identified from 6,499 peptides, which were matched with 15,879 spectra. Compared with healthy mammary gland tissue, 36 proteins were significantly up-regulated (>1.5-fold) while 19 were significantly down-regulated (<0.67-fold) in response to mastitis due to natural infections with Staphylococci aureus. Up-regulation of collagen, type I, alpha 1 (COL1A1) and inter-alpha (Globulin) inhibitor H4 (ITIH4) in the mastitis-infected tissue was confirmed by Western blotting and Immunohistochemistry. CONCLUSION: This paper is the first to show the protein expression in the late response to a mastitic pathogen, thus, revealing mechanisms associated with host tissue damage. The bioinformatics analyses highlighted the effects of mastitis on proteins such as collagen, fibrinogen, fibronectin, casein alpha and heparan sulfate proteoglycan 2. Our findings provide additional clues for further studies of candidate genes for mastitis susceptibility. The up-regulated expression of COL1A1 and ITIH4 in the mastitic mammary gland may be associated with tissue damage and repair during late stages of infection.


Subject(s)
Computational Biology , Mammary Glands, Animal/metabolism , Mastitis, Bovine/metabolism , Proteomics , Staphylococcal Infections/metabolism , Animals , Cattle , Collagen Type I/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Gene Regulatory Networks/genetics , Mammary Glands, Animal/pathology , Mastitis, Bovine/microbiology , Mastitis, Bovine/pathology , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Proteinase Inhibitory Proteins, Secretory/metabolism , Software , Staphylococcal Infections/pathology , Staphylococcal Infections/veterinary , Staphylococcus aureus/pathogenicity , Tandem Mass Spectrometry , Up-Regulation
16.
Hum Genet ; 133(1): 95-109, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24026423

ABSTRACT

Platelets are enucleated cell fragments derived from megakaryocytes that play key roles in hemostasis and in the pathogenesis of atherothrombosis and cancer. Platelet traits are highly heritable and identification of genetic variants associated with platelet traits and assessing their pleiotropic effects may help to understand the role of underlying biological pathways. We conducted an electronic medical record (EMR)-based study to identify common variants that influence inter-individual variation in the number of circulating platelets (PLT) and mean platelet volume (MPV), by performing a genome-wide association study (GWAS). We characterized genetic variants associated with MPV and PLT using functional, pathway and disease enrichment analyses; we assessed pleiotropic effects of such variants by performing a phenome-wide association study (PheWAS) with a wide range of EMR-derived phenotypes. A total of 13,582 participants in the electronic MEdical Records and GEnomic network had data for PLT and 6,291 participants had data for MPV. We identified five chromosomal regions associated with PLT and eight associated with MPV at genome-wide significance (P < 5E-8). In addition, we replicated 20 SNPs [out of 56 SNPs (α: 0.05/56 = 9E-4)] influencing PLT and 22 SNPs [out of 29 SNPs (α: 0.05/29 = 2E-3)] influencing MPV in a published meta-analysis of GWAS of PLT and MPV. While our GWAS did not find any new associations, our functional analyses revealed that genes in these regions influence thrombopoiesis and encode kinases, membrane proteins, proteins involved in cellular trafficking, transcription factors, proteasome complex subunits, proteins of signal transduction pathways, proteins involved in megakaryocyte development, and platelet production and hemostasis. PheWAS using a single-SNP Bonferroni correction for 1,368 diagnoses (0.05/1368 = 3.6E-5) revealed that several variants in these genes have pleiotropic associations with myocardial infarction, autoimmune, and hematologic disorders. We conclude that multiple genetic loci influence interindividual variation in platelet traits and also have significant pleiotropic effects; the related genes are in multiple functional pathways including those relevant to thrombopoiesis.


Subject(s)
Genetic Pleiotropy , Genome-Wide Association Study/methods , Mean Platelet Volume , Platelet Count , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/genetics , Chromosomes, Human/genetics , Female , Genetic Loci , Hemostasis , Humans , Male , Meta-Analysis as Topic , Middle Aged , Phenotype , Thrombopoiesis/genetics
17.
Am J Hum Genet ; 89(4): 529-42, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21981779

ABSTRACT

We repurposed existing genotypes in DNA biobanks across the Electronic Medical Records and Genomics network to perform a genome-wide association study for primary hypothyroidism, the most common thyroid disease. Electronic selection algorithms incorporating billing codes, laboratory values, text queries, and medication records identified 1317 cases and 5053 controls of European ancestry within five electronic medical records (EMRs); the algorithms' positive predictive values were 92.4% and 98.5% for cases and controls, respectively. Four single-nucleotide polymorphisms (SNPs) in linkage disequilibrium at 9q22 near FOXE1 were associated with hypothyroidism at genome-wide significance, the strongest being rs7850258 (odds ratio [OR] 0.74, p = 3.96 × 10(-9)). This association was replicated in a set of 263 cases and 1616 controls (OR = 0.60, p = 5.7 × 10(-6)). A phenome-wide association study (PheWAS) that was performed on this locus with 13,617 individuals and more than 200,000 patient-years of billing data identified associations with additional phenotypes: thyroiditis (OR = 0.58, p = 1.4 × 10(-5)), nodular (OR = 0.76, p = 3.1 × 10(-5)) and multinodular (OR = 0.69, p = 3.9 × 10(-5)) goiters, and thyrotoxicosis (OR = 0.76, p = 1.5 × 10(-3)), but not Graves disease (OR = 1.03, p = 0.82). Thyroid cancer, previously associated with this locus, was not significantly associated in the PheWAS (OR = 1.29, p = 0.09). The strongest association in the PheWAS was hypothyroidism (OR = 0.76, p = 2.7 × 10(-13)), which had an odds ratio that was nearly identical to that of the curated case-control population in the primary analysis, providing further validation of the PheWAS method. Our findings indicate that EMR-linked genomic data could allow discovery of genes associated with many diseases without additional genotyping cost.


Subject(s)
Forkhead Transcription Factors/genetics , Hypothyroidism/genetics , Aged , Algorithms , Female , Genetic Markers , Genetic Variation , Genome , Genome-Wide Association Study , Genotype , Humans , Male , Medical Records Systems, Computerized , Middle Aged , Phenotype , Predictive Value of Tests
18.
Genome Res ; 21(7): 1001-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21632745

ABSTRACT

In 2007, the National Human Genome Research Institute (NHGRI) established the Electronic MEdical Records and GEnomics (eMERGE) Consortium (www.gwas.net) to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. One of the major ethical and administrative challenges for the eMERGE Consortium has been complying with existing data-sharing policies. This paper discusses the challenges of sharing genomic data linked to health information in the electronic medical record (EMR) and explores the issues as they relate to sharing both within a large consortium and in compliance with the National Institutes of Health (NIH) data-sharing policy. We use the eMERGE Consortium experience to explore data-sharing challenges from the perspective of multiple stakeholders (i.e., research participants, investigators, and research institutions), provide recommendations for researchers and institutions, and call for clearer guidance from the NIH regarding ethical implementation of its data-sharing policy.


Subject(s)
Electronic Health Records/ethics , Genome-Wide Association Study/methods , Genomics/ethics , Information Dissemination/ethics , Cooperative Behavior , Databases, Genetic , Humans , Internet , National Human Genome Research Institute (U.S.) , National Institutes of Health (U.S.) , Public Policy , United States
19.
Mol Vis ; 20: 1281-95, 2014.
Article in English | MEDLINE | ID: mdl-25352737

ABSTRACT

PURPOSE: Cataract is the leading cause of blindness in the world, and in the United States accounts for approximately 60% of Medicare costs related to vision. The purpose of this study was to identify genetic markers for age-related cataract through a genome-wide association study (GWAS). METHODS: In the electronic medical records and genomics (eMERGE) network, we ran an electronic phenotyping algorithm on individuals in each of five sites with electronic medical records linked to DNA biobanks. We performed a GWAS using 530,101 SNPs from the Illumina 660W-Quad in a total of 7,397 individuals (5,503 cases and 1,894 controls). We also performed an age-at-diagnosis case-only analysis. RESULTS: We identified several statistically significant associations with age-related cataract (45 SNPs) as well as age at diagnosis (44 SNPs). The 45 SNPs associated with cataract at p<1×10(-5) are in several interesting genes, including ALDOB, MAP3K1, and MEF2C. All have potential biologic relationships with cataracts. CONCLUSIONS: This is the first genome-wide association study of age-related cataract, and several regions of interest have been identified. The eMERGE network has pioneered the exploration of genomic associations in biobanks linked to electronic health records, and this study is another example of the utility of such resources. Explorations of age-related cataract including validation and replication of the association results identified herein are needed in future studies.


Subject(s)
Cataract/genetics , Electronic Health Records/statistics & numerical data , Fructose-Bisphosphate Aldolase/genetics , Genetic Predisposition to Disease , MAP Kinase Kinase Kinase 1/genetics , Polymorphism, Single Nucleotide , Age Factors , Aged , Aged, 80 and over , Algorithms , Cataract/pathology , Databases, Nucleic Acid , Female , Genetic Markers , Genome, Human , Genome-Wide Association Study , Health Care Costs , Humans , MEF2 Transcription Factors/genetics , Male , Middle Aged , Quantitative Trait Loci , United States
20.
Mol Biol Rep ; 41(3): 1273-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24469708

ABSTRACT

Peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. In this research, polymerase chain reaction (PCR) technique was used to amplify 766 and 589 bp fragments of intron 3 and 7 of PPARα gene in Chinese Holstein (n = 771). Sequencing results showed that three novel single nucleotide polymorphisms (SNPs) were identified at position 44087 (G/A), 65550 (G/A), and 65676(G/A) in the PPARα gene. PCR-restriction fragment length polymorphism technology was used to genotype the three SNPs. Association analysis showed that cows with H1H8 (P < 0.05), H2H8 (P < 0.01), H5H7 (P < 0.05), H5H8 (P < 0.05), and H8H8 (P < 0.05) haplotype combinations had lower potassium content in erythrocytes than those with H2H6 haplotype combination. Cows with H1H8, and H8H8 haplotype combinations had lower decrease rate of milk yield than those with H2H6 and H6H8 haplotype combinations (P < 0.05). Cows with H2H8 and H8H8 haplotype combinations had lower rectal temperature than those with H5H8 and H7H7 haplotype combinations (P < 0.05). In conclusion, H8H8 haplotype combination may be advantageous for heat resistance traits in Chinese Holstein cattle.


Subject(s)
Genetic Association Studies , Hot Temperature , PPAR alpha/genetics , Animals , Asian People , Cattle , Genotype , Haplotypes , Humans , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL