Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Angew Chem Int Ed Engl ; 63(30): e202403331, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38728142

ABSTRACT

The evolution of inorganic solid electrolytes has revolutionized the field of sustainable organic cathode materials, particularly by addressing the dissolution problems in traditional liquid electrolytes. However, current sulfide-based all-solid-state lithium-organic batteries still face challenges such as high working temperatures, high costs, and low voltages. Here, we design an all-solid-state lithium battery based on a cost-effective organic cathode material phenanthrenequinone (PQ) and a halide solid electrolyte Li2ZrCl6. Thanks to the good compatibility between PQ and Li2ZrCl6, the PQ cathode achieved a high specific capacity of 248 mAh g-1 (96 % of the theoretical capacity), a high average discharge voltage of 2.74 V (vs. Li+/Li), and a good capacity retention of 95 % after 100 cycles at room temperature (25 °C). Furthermore, the interactions between the high-voltage carbonyl PQ cathode and both sulfide and halide solid electrolytes, as well as the redox mechanism of the PQ cathode in all-solid-state batteries, were carefully studied by a variety of advanced characterizations. We believe such a design and the corresponding investigations into the underlying chemistry give insights for the further development of practical all-solid-state lithium-organic batteries.

2.
J Am Chem Soc ; 145(21): 11701-11709, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37195646

ABSTRACT

Inorganic solid-state electrolytes (SSEs) have gained significant attention for their potential use in high-energy solid-state batteries. However, there is a lack of understanding of the underlying mechanisms of fast ion conduction in SSEs. Here, we clarify the critical parameters that influence ion conductivity in SSEs through a combined analysis approach that examines several representative SSEs (Li3YCl6, Li3HoCl6, and Li6PS5Cl), which are further verified in the xLiCl-InCl3 system. The scaling analysis on conductivity spectra allowed the decoupled influences of mobile carrier concentration and hopping rate on ionic conductivity. Although the carrier concentration varied with temperature, the change alone cannot lead to the several orders of magnitude difference in conductivity. Instead, the hopping rate and the ionic conductivity present the same trend with the temperature change. Migration entropy, which arises from lattice vibrations of the jumping atoms from the initial sites to the saddle sites, is also proven to play a significant role in fast Li+ migration. The findings suggest that the multiple dependent variables such as the Li+ hopping frequency and migration energy are also responsible for the ionic conduction behavior within SSEs.

3.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36583711

ABSTRACT

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

4.
Environ Res ; 216(Pt 3): 114723, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36336093

ABSTRACT

Ammonia nitrogen (NH3-N) is closely related to the occurrence of cyanobacterial blooms and destruction of surface water ecosystems, and thus it is of great significance to develop predictive models for NH3-N. However, traditional models cannot fully consider the complex nonlinear relationship between NH3-N and various relative environmental parameters. The long short-term memory (LSTM) neural network can overcome this limitation. A new hybrid model BC-MODWT-DA-LSTM was proposed based on LSTM combining with the dual-stage attention (DA) mechanism and boundary corrected maximal overlap discrete wavelet transform (BC-MODWT) data decomposition method. By introducing attention mechanism, LSTM could selectively focus on the input data. BC-MODWT could decompose the input data into sublayers to determine the main swings and trends of the input feature series. The BC-MODWT-DA-LSTM hybrid model was superior to other studied models with lower average prediction errors. It could maintain NASH Sutcliffe efficiency coefficient (NSE) values above 0.900 under the lead time up to 7 days, and the area under the receiver operating characteristic (ROC) curve could reach 0.992. The hybrid model also had higher prediction accuracies at the peak spots, indicating that it was capable of early warning when sudden high NH3-N pollution occurred. The high forecasting accuracy of the suggested hybrid method proved that further improving LSTM model without introducing more complex topologies was a promising water quality prediction method.


Subject(s)
Ammonia , Deep Learning , Ecosystem , Neural Networks, Computer , Nitrogen
5.
Angew Chem Int Ed Engl ; 62(13): e202217081, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36697365

ABSTRACT

Insertion-type compounds based on oxides and sulfides have been widely identified and well-studied as cathode materials in lithium-ion batteries. However, halides have rarely been used due to their high solubility in organic liquid electrolytes. Here, we reveal the insertion electrochemistry of VX3 (X=Cl, Br, I) by introducing a compatible halide solid-state electrolyte with a wide electrochemical stability window. X-ray absorption near-edge structure analyses reveal a two-step lithiation process and the structural transition of typical VCl3 . Fast Li+ insertion/extraction in the layered VX3 active materials and favorable interface guaranteed by the compatible electrode-electrolyte design enables high rate capability and stable operation of all-solid-state Li-VX3 batteries. The findings from this study will contribute to developing intercalation insertion electrochemistry of halide materials and exploring novel electrode materials in viable energy storage systems.

6.
Angew Chem Int Ed Engl ; 62(5): e202215680, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36446742

ABSTRACT

Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10-8  S cm-1 ) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li-Li symmetric cells with 30 times longer cycling life and Li-LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li-LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm-2 . The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.

7.
J Environ Sci (China) ; 111: 292-300, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34949359

ABSTRACT

The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%-80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.


Subject(s)
Membranes, Artificial , Water Purification , Electricity , Organic Chemicals , Ultrafiltration
8.
Small ; 17(16): e2004453, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33538108

ABSTRACT

Single atomic Pt catalysts exhibit particularly high hydrogen evolution reaction (HER) activity compared to conventional nanomaterial-based catalysts. However, the enhanced mechanisms between Pt and their coordination environment are not understood in detail. Hence, a systematic study examining the different types of N in the support is essential to clearly demonstrate the relationship between Pt single atoms and N-doped support. Herein, three types of carbon nanotubes with varying types of N (pyridine-like N, pyrrole-like N, and quaternary N) are used as carbon support for Pt single atom atomic layer deposition. The detailed coordination environment of the Pt single atom catalyst is carefully studied by electron microscope and X-ray absorption spectra (XAS). Interestingly, with the increase of pyrrole-like N in the CNT support, the HER activity of the Pt catalyst also improves. First principle calculations results indicate that the interaction between the dyz and s orbitals of H and sp3 hybrid orbital of N should be the origin of the superior HER performance of these Pt single atom catalysts (SACs).

9.
Small ; 17(11): e2007245, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33605070

ABSTRACT

Single-atom catalysts (SACs) have attracted significant attention due to their superior catalytic activity and selectivity. However, the nature of active sites of SACs under realistic reaction conditions is ambiguous. In this work, high loading Pt single atoms on graphitic carbon nitride (g-C3 N4 )-derived N-doped carbon nanosheets (Pt1 /NCNS) is achieved through atomic layer deposition. Operando X-ray absorption spectroscopy (XAS) is performed on Pt single atoms and nanoparticles (NPs) in both the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The operando results indicate that the total unoccupied density of states of Pt 5d orbitals of Pt1 atoms is higher than that of Pt NPs under HER condition, and that a stable Pt oxide is formed during ORR on Pt1 /NCNS, which may suppress the adsorption and activation of O2 . This work unveils the nature of Pt single atoms under realistic HER and ORR conditions, providing a deeper understanding for designing advanced SACs.

10.
Nano Lett ; 20(6): 4384-4392, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32406692

ABSTRACT

The high ionic conductivity, air/humidity tolerance, and related chemistry of Li3MX6 solid-state electrolytes (SSEs, M is a metal element, and X is a halogen) has recently gained significant interest. However, most of the halide SSEs suffer from irreversible chemical degradation when exposed to a humid atmosphere, which originates from hydrolysis. Herein, the function of the M atom in Li3MX6 was clarified by a series of Li3Y1-xInxCl6 (0 ≤ x < 1). When the ratio of In3+ was increased, a gradual structural conversion from the hexagonal-closed-packed (hcp) anion arrangement to cubic-closed-packed (ccp) anion arrangement has been traced. Compared to hcp anion sublattice, the Li3MX6 with ccp anion sublattice reveals faster Li+ migration. The tolerance of Li3Y1-xInxCl6 towards humidity is highly improved when the In3+ content is high enough due to the formation of hydrated intermediates. The correlations among composition, structure, Li+ migration, and humidity stability presented in this work provide insights for designing new halide-based SSEs.

11.
Angew Chem Int Ed Engl ; 60(11): 5821-5826, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33241631

ABSTRACT

Solid-state Li-O2 batteries possess the ability to deliver high energy density with enhanced safety. However, designing a highly functional solid-state air electrode is the main bottleneck for its further development. Herein, we adopt a hybrid electronic and ionic conductor to build solid-state air electrode that makes the transition of Li-O2 battery electrochemical mechanism from a three-phase process to a two-phase process. The solid-state Li-O2 battery with this hybrid conductor solid-state air electrode shows decreased interfacial resistance and enhanced reaction kinetics. The Coulombic efficiency of Li-O2 battery is also significantly improved, benefiting from the good contact between discharge products and electrode materials. In situ environmental transmission electron microscopy under oxygen was used to illustrate the reversible deposition and decomposition of discharge products on the surface of this hybrid conductor, visually verifying the two-phase reaction.

12.
J Am Chem Soc ; 142(15): 7012-7022, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32212650

ABSTRACT

The enabling of high energy density of all-solid-state lithium batteries (ASSLBs) requires the development of highly Li+-conductive solid-state electrolytes (SSEs) with good chemical and electrochemical stability. Recently, halide SSEs based on different material design principles have opened new opportunities for ASSLBs. Here, we discovered a series of LixScCl3+x SSEs (x = 2.5, 3, 3.5, and 4) based on the cubic close-packed anion sublattice with room-temperature ionic conductivities up to 3 × 10-3 S cm-1. Owing to the low eutectic temperature between LiCl and ScCl3, LixScCl3+x SSEs can be synthesized by a simple co-melting strategy. Preferred orientation is observed for all the samples. The influence of the value of x in LixScCl3+x on the structure and Li+ diffusivity were systematically explored. With increasing x value, higher Li+, lower vacancy concentration, and less blocking effects from Sc ions are achieved, enabling the ability to tune the Li+ migration. The electrochemical performance shows that Li3ScCl6 possesses a wide electrochemical window of 0.9-4.3 V vs Li+/Li, stable electrochemical plating/stripping of Li for over 2500 h, as well as good compatibility with LiCoO2. LiCoO2/Li3ScCl6/In ASSLB exhibits a reversible capacity of 104.5 mAh g-1 with good cycle life retention for 160 cycles. The observed changes in the ionic conductivity and tuning of the site occupations provide an additional approach toward the design of better SSEs.

13.
Small ; 16(43): e2003096, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33015944

ABSTRACT

Configuring metal single-atom catalysts (SACs) with high electrocatalytic activity and stability is one efficient strategy in achieving the cost-competitive catalyst for fuel cells' applications. Herein, the atomic layer deposition (ALD) strategy for synthesis of Pt SACs on the metal-organic framework (MOF)-derived N-doped carbon (NC) is proposed. Through adjusting the ALD exposure time of the Pt precursor, the size-controlled Pt catalysts, from Pt single atoms to subclusters and nanoparticles, are prepared on MOF-NC support. X-ray absorption fine structure spectra determine the increased electron vacancy in Pt SACs and indicate the Pt-N coordination in the as-prepared Pt SACs. Benefiting from the low-coordination environment and anchoring interaction between Pt atoms and nitrogen-doping sites from MOF-NC support, the Pt SACs deliver an enhanced activity and stability with 6.5 times higher mass activity than that of Pt nanoparticle catalysts in boosting the oxygen reduction reaction (ORR). Density functional theory calculations indicate that Pt single atoms prefer to be anchored by the pyridinic N-doped carbon sites. Importantly, it is revealed that the electronic structure of Pt SAs can be adjusted by adsorption of hydroxyl and oxygen, which greatly lowers free energy change for the rate-determining step and enhances the activity of Pt SACs toward the ORR.

14.
Angew Chem Int Ed Engl ; 59(34): 14313-14320, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32463932

ABSTRACT

Li- and Mn-rich layered oxides are among the most promising cathode materials for Li-ion batteries with high theoretical energy density. Its practical application is, however, hampered by the capacity and voltage fade after long cycling. Herein, a finite difference method for near-edge structure (FDMNES) code was combined with in situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) to investigate the evolution of transition metals (TMs) in fresh and heavily cycled electrodes. Theoretical modeling reveals a recurring partially reversible LiMn2 O4 -like sub-nanodomain formation/dissolution process during each charge/discharge, which accumulates gradually and accounts for the Mn phase transition. From the modeling of spectra and maps of the valence state over large regions of the cathodes, it was found that the phase change is size-dependent. After prolonged cycling, the TMs displayed different levels of inactivity.

15.
Angew Chem Int Ed Engl ; 58(44): 15797-15802, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31400290

ABSTRACT

Herein, molecular layer deposition is used to form a nanoscale "zircone" protective layer on Li metal to achieve stable and long life Li metal anodes. The zircone-coated Li metal shows enhanced air stability, electrochemical performance and high rate capability in symmetrical cell testing. Moreover, as a proof of concept, the protected Li anode is used in a next-generation Li-O2 battery system and is shown to extend the lifetime by over 10-fold compared to the batteries with untreated Li metal. Furthermore, in-situ synchrotron X-ray absorption spectroscopy is used for the first time to study an artificial SEI on Li metal, revealing the electrochemical stability and lithiation of the zircone film. This work exemplifies significant progress towards the development and understanding of MLD thin films for high performance next-generation batteries.

16.
Angew Chem Int Ed Engl ; 58(46): 16427-16432, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31476261

ABSTRACT

To promote the development of solid-state batteries, polymer-, oxide-, and sulfide-based solid-state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high-temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10-3  S cm-1 ), good air stability, wide electrochemical window, excellent electrode interface stability, low-cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3 InCl6 , that can be synthesized in water. Most importantly, the as-synthesized Li3 InCl6 shows a high ionic conductivity of 2.04×10-3  S cm-1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8 Co0.1 Mn0.1 O2 cathode, the solid-state Li battery shows good cycling stability.

17.
Small ; 14(20): e1703717, 2018 May.
Article in English | MEDLINE | ID: mdl-29658174

ABSTRACT

Na metal anode attracts increasing attention as a promising candidate for Na metal batteries (NMBs) due to the high specific capacity and low potential. However, similar to issues faced with the use of Li metal anode, crucial problems for metallic Na anode remain, including serious moss-like and dendritic Na growth, unstable solid electrolyte interphase formation, and large infinite volume changes. Here, the rational design of carbon paper (CP) with N-doped carbon nanotubes (NCNTs) as a 3D host to obtain Na@CP-NCNTs composites electrodes for NMBs is demonstrated. In this design, 3D carbon paper plays a role as a skeleton for Na metal anode while vertical N-doped carbon nanotubes can effectively decrease the contact angle between CP and liquid metal Na, which is termed as being "Na-philic." In addition, the cross-conductive network characteristic of CP and NCNTs can decrease the effective local current density, resulting in uniform Na nucleation. Therefore, the as-prepared Na@CP-NCNT exhibits stable electrochemical plating/stripping performance in symmetrical cells even when using a high capacity of 3 mAh cm-2 at high current density. Furthermore, the 3D skeleton structure is observed to be intact following electrochemical cycling with minimum volume change and is dendrite-free in nature.

18.
Cerebrovasc Dis ; 45(5-6): 204-212, 2018.
Article in English | MEDLINE | ID: mdl-29627835

ABSTRACT

BACKGROUND: Early and accurate diagnosis of ischaemic stroke (IS) requires the use of an optimized biomarker. Exosomal microRNAs have the potential to serve as biomarkers owing to their stability and specificity. We investigated the expression levels of plasma-derived exosomal microRNA-21-5p and microRNA-30a-5p in the different phases of IS. METHODS: One hundred forty-three patients with IS and 24 non-stroke controls were enrolled. The patients were divided into the following 5 groups: 1 group for the hyperacute phase IS (HIS, within 6 h); two for the acute phase IS (AIS, including days 1-3 and days 4-7); one for the subacute phase IS (SIS, days 8-14); and one for the recovery phase IS (RIS, days >14). Plasma exosomes were isolated using a QIAGEN exoRNeasy kit and examined by transmission electron -microscopy, nanoparticle tracking, and flow cytometry. The expression levels of miRNA-21-5p and miRNA-30a-5p were detected by quantitative real-time polymerase chain reaction. RESULTS: The plasma exosomal miR-21-5p levels in SIS and RIS were significantly higher than that in controls (p < 0.05 and p < 0.01 respectively). The levels of miR-30a-5p in HIS were significantly higher (p < 0.05) and in AIS (days 1-3) were lower than that in controls (p < 0.05). In AIS (days 1-3), both miRNAs were decreased compared with the HIS group (p = 0.053 and 0.001, respectively). The area under the curve (AUC) of the miR-21-5p was 0.714 for SIS (95% CI 0.570-0.859, p = 0.007), 0.734 for RIS (95% CI 0.596-0.871, p = 0.003); the AUC of the miR-30a-5p was 0.826 for HIS (95% CI 0.665-0.988, p = 0.001), 0.438 for AIS (days 1-3; 95% CI 0.240-0.635, p = 0.516). CONCLUSIONS: The plasma-derived exosomal miR-21-5p and miRNA-30a-5p in combination are promising biomarkers for diagnosing IS and distinguishing among HIS, SIS, and RIS, especially miRNA-30a-5p for the diagnosis of the HIS phase. Our results provide a new reference for clinicians to apply in early-stage diagnosis and identifies the possible value of biomarkers for IS thrombolysis therapy.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/genetics , Exosomes/genetics , MicroRNAs/genetics , Stroke/diagnosis , Stroke/genetics , Aged , Brain Ischemia/blood , Case-Control Studies , Down-Regulation , Exosomes/ultrastructure , Female , Genetic Markers , Humans , Male , Microscopy, Electron, Transmission , Middle Aged , Predictive Value of Tests , Real-Time Polymerase Chain Reaction , Stroke/blood , Time Factors
19.
Nano Lett ; 17(9): 5653-5659, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28817285

ABSTRACT

Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al2O3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

20.
Nano Lett ; 16(6): 3545-9, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27175936

ABSTRACT

Lithium-sulfur (Li-S) battery is a promising high energy storage candidate in electric vehicles. However, the commonly employed ether based electrolyte does not enable to realize safe high-temperature Li-S batteries due to the low boiling and flash temperatures. Traditional carbonate based electrolyte obtains safe physical properties at high temperature but does not complete reversible electrochemical reaction for most Li-S batteries. Here we realize safe high temperature Li-S batteries on universal carbon-sulfur electrodes by molecular layer deposited (MLD) alucone coating. Sulfur cathodes with MLD coating complete the reversible electrochemical process in carbonate electrolyte and exhibit a safe and ultrastable cycle life at high temperature, which promise practicable Li-S batteries for electric vehicles and other large-scale energy storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL