Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Foodborne Pathog Dis ; 21(4): 236-247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38150226

ABSTRACT

The microbes on fresh processing tomatoes correlate closely with diseases, preservation, and quality control. Investigation of the microbial communities on processing tomatoes from different production regions may help define microbial specificity, inform disease prevention methods, and improve quality. In this study, surface microbes on processing tomatoes from 10 samples in two primary production areas of southern and northern Xinjiang were investigated by sequencing fungal internal transcribed spacer and bacterial 16S rRNA hypervariable sequences. A total of 133 different fungal and bacterial taxonomies were obtained from processing tomatoes in the two regions, of which 63 genera were predominant. Bacterial and fungal communities differed significantly between southern and northern Xinjiang, and fungal diversity was higher in southern Xinjiang. Alternaria and Cladosporium on processing tomatoes in southern Xinjiang were associated with plant pathogenic risk. The plant pathogenic fungi of processing tomatoes in northern Xinjiang were more abundant in Alternaria and Fusarium. The abundance of Alternaria on processing tomatoes was higher in four regions of northern Xinjiang, indicating that there is a greater risk of plant pathogenicity in these areas. Processing tomatoes in northern and southern Xinjiang contained bacterial genera identified as gut microbes, such as Pantoea, Erwinia, Enterobacter, Enterococcus, and Serratia, indicating the potential risk of contamination of processing tomatoes with foodborne pathogens. This study highlighted the microbial specificity of processing tomatoes in two tomato production regions, providing a basis for further investigation and screening for foodborne pathogenic microorganisms.


Subject(s)
Microbiota , Solanum lycopersicum , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Fungi/genetics , Bacteria/genetics
2.
Biochem Biophys Res Commun ; 503(4): 2504-2509, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30208518

ABSTRACT

The upconversion luminescence (UCL) marker based on upconversion nanoparticles (UCNPs) shows unique advantages over traditional fluorescence markers, such as enhanced tissue penetration, better photostability, and less autofluorescence. Herein, we constructed a new UCL gene-delivery nonviral vector via layer-by-layer self-assembly of poly(ethylene imine) (PEI) with UCNPs. To reduce the cytotoxicity of PEI, citric acid (CA) was introduced for aqueous modification, and PEI assembly was introduced on the UCNP surface. Our data show that the nonviral vector for UCL gene-delivery demonstrates excellent photostability, low toxicity, and good stability under physiological or serum conditions and can strongly bind to DNA. Moreover, this UCL PEI-based vector could serve as a promising fluorescent gene-delivery carrier for theranostic applications.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Luminescence , Polyethyleneimine , Biomarkers , DNA/metabolism , Genetic Vectors/administration & dosage , HeLa Cells , Humans , Methods , Nanoparticles , Polyethyleneimine/pharmacokinetics , Polyethyleneimine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL