Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; : e2401132, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552226

ABSTRACT

Li-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free Li1.16Mn0.56Ni0.28O2 cathodes. The incorporation of Mo with high d state orbit and Cl with low electronegativity can narrow the band energy gap between bonding and antibonding bands via increasing the filled lower-Hubbard band (LHB) and decreasing the non-bonding O 2p energy bands, promoting the anionic redox reversibility. In addition, strong covalent Mo─O and Mn─Cl bonding further increases the covalency of Mn─O band to further stabilize the O2 n- species and enhance the reversible distortion of MnO6 octahedron. The strengthening electronic conductivity, together with the epitaxial structure Li2MoO4 facilitates the fast Li+ kinetics. As a result, the dual doping material exhibits enhanced anionic redox reversibility and suppressed oxygen release with increased cyclic stability and excellent rate performance. This strategy provides some guidance to design high-energy-density LLOs with desirable anionic redox reversibility and stable crystal structure via band structure engineering.

2.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35817303

ABSTRACT

Many studies have proved that small nucleolar RNAs (snoRNAs) play critical roles in the development of various human complex diseases. Discovering the associations between snoRNAs and diseases is an important step toward understanding the pathogenesis and characteristics of diseases. However, uncovering associations via traditional experimental approaches is costly and time-consuming. This study proposed a bounded nuclear norm regularization-based method, called PSnoD, to predict snoRNA-disease associations. Benchmark experiments showed that compared with the state-of-the-art methods, PSnoD achieved a superior performance in the 5-fold stratified shuffle split. PSnoD produced a robust performance with an area under receiver-operating characteristic of 0.90 and an area under precision-recall of 0.55, highlighting the effectiveness of our proposed method. In addition, the computational efficiency of PSnoD was also demonstrated by comparison with other matrix completion techniques. More importantly, the case study further elucidated the ability of PSnoD to screen potential snoRNA-disease associations. The code of PSnoD has been uploaded to https://github.com/linDing-groups/PSnoD. Based on PSnoD, we established a web server that is freely accessed via http://psnod.lin-group.cn/.


Subject(s)
Cell Nucleus , RNA, Small Nucleolar , Humans , RNA, Small Nucleolar/genetics
3.
Mol Cell Biochem ; 479(4): 843-857, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37204666

ABSTRACT

Multiple myeloma (MM) is an accumulated disease of malignant plasma cells, which is still incurably owing to therapeutic resistance and disease relapse. Herein, we synthesized a novel 2-iminobenzimidazole compound, XYA1353, showing a potent anti-myeloma activity both in vitro and in vivo. Compound XYA1353 dose-dependently promoted MM cell apoptosis via activating caspase-dependent endogenous pathways. Moreover, compound XYA1353 could enhance bortezomib (BTZ)-mediated DNA damage via elevating γH2AX expression levels. Notably, compound XYA1353 interacted synergistically with BTZ and overcame drug resistance. RNA sequencing analysis and experiments confirmed that compound XYA1353 inhibited primary tumor growth and myeloma distal infiltration by disturbing canonical NF-κB signaling pathway via decreasing expression of P65/P50 and p-IκBα phosphorylation level. Due to its importance in regulating MM progression, compound XYA1353 alone or combined with BTZ may potentially exert therapeutic effects on multiple myeloma by suppressing canonical NF-κB signaling.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Multiple Myeloma/pathology , NF-kappa B/metabolism , Bortezomib/pharmacology , Bortezomib/therapeutic use , Signal Transduction , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Fish Shellfish Immunol ; 144: 109282, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081442

ABSTRACT

Vibrio parahaemolyticus carrying a pathogenic plasmid (VPAHPND) is one of the main causative agents of acute hepatopancreatic necrosis disease (AHPND) in shrimp aquaculture. Knowledge about the mechanism of shrimp resistant to VPAHPND is very helpful for developing efficient strategy for breeding AHPND resistant shrimp. In order to learn the mechanism of shrimp resistant to AHPND, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp from different families with different resistance to VPAHPND. Through comparative analysis on the hepatopancreas of shrimp from VPAHPND resistant family and susceptible family, we found that differentially expressed genes (DEGs) were mainly involved in immune and metabolic processes. Most of the immune-related genes among DEGs were highly expressed in the hepatopancreas of shrimp from resistant family, involved in recognition of pathogen-associated molecular patterns, phagocytosis and elimination of pathogens, maintenance of reactive oxygen species homeostasis and other immune processes etc. However, most metabolic-related genes were highly expressed in the hepatopancreas of shrimp from susceptible family, involved in metabolism of lipid, vitamin, cofactors, glucose, carbohydrate and serine. Interestingly, when we analyzed the expression of above DEGs in the shrimp after VPAHPND infection, we found that the most of identified immune-related genes remained at high expression levels in the hepatopancreas of shrimp from the VPAHPND resistant family, and most of the identified metabolic-related genes were still at high expression levels in the hepatopancreas of shrimp from the VPAHPND susceptible family. The data suggested that the differential expression of these immune-related and metabolic-related genes in hepatopancreas might contribute to the resistance variations of shrimp to VPAHPND. These results provided valuable information for understanding the resistant mechanism of shrimp to VPAHPND.


Subject(s)
Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Humans , Animals , Transcriptome , Vibrio parahaemolyticus/genetics , Hepatopancreas , Penaeidae/genetics , Gene Expression Profiling , Necrosis
5.
Inorg Chem ; 63(1): 554-563, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38151237

ABSTRACT

The meaningful and rational engineering of porphyrin-based catalysts with multimetallic active sites is very attractive toward photocatalytic hydrogen generation from water decomposition. Herein, three metal organic frameworks (MOFs) based on meso-tetrakis(4-carboxylphenyl)porphyrin (TCPP) were successfully constructed under solvothermal conditions. As a novel architectured photocatalyst (triclinic, C48H29N4O10PdYb), Pd/Yb-PMOF manifested diverse metal active sites, suitable bandgap positions, prominent visible light-collecting capacity, excellent carrier transfer efficiency, and obvious synergistic effect between ytterbium and palladium ions. Consequently, such a bimetallic MOF exhibited strengthened photocatalytic hydrogen evolution performance. Concretely, its hydrogen generation efficiency was up to 3196.42 µmol g-1 h-1 with 2 wt % Pt as a cocatalyst under visible light illumination. Our work demonstrates a promising strategy for highly efficient visible-light catalysts based on bimetallic-trimmed porphyrin MOFs.

6.
J Phys Chem A ; 128(22): 4467-4473, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38783510

ABSTRACT

Understanding kinetic isotope effects is important in the study of the reaction dynamics of elementary chemical reactions, particularly those involving hydrogen atoms and molecules. As one of the isotopic variants of the hydrogen exchange reaction, the D + para-H2 reaction has attracted much attention. However, experimental studies of this reaction have been limited primarily due to its strong experimental background noise. In this study, by using the velocity map ion imaging method and the near-threshold ionization technique, together with improvements on the vacuum condition in the vicinity of the collision zone, background noise was reduced significantly, and quantum state-resolved differential cross sections (DCSs) for the D + para-H2 reaction at a collision energy of 1.21 eV were acquired in a crossed molecular beams experiment. Interestingly, clear rotational state-dependent angular distributions were noticed in the quantum state-resolved DCSs. The most intense peak's positions for HD (v', j') products shift to different scattering directions as the product's ro-vibrational quantum number increases. Two different microscopic reaction mechanisms are found to be involved in this reaction for HD products in different vibrational states. The results show a direct correlation between the scattering angle and the product's rotational quantum number, revealing that the contributions of impact parameters are strongly influenced by the corresponding centrifugal barrier.

7.
Nano Lett ; 23(15): 6845-6851, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37467358

ABSTRACT

Magnetic domain wall (DW)-based logic devices offer numerous opportunities for emerging electronics applications allowing superior performance characteristics such as fast motion, high density, and nonvolatility to process information. However, these devices rely on an external magnetic field, which limits their implementation; this is particularly problematic in large-scale applications. Multiferroic systems consisting of a piezoelectric substrate coupled with ferromagnets provide a potential solution that provides the possibility of controlling magnetization through an electric field via magnetoelastic coupling. Strain-induced magnetization anisotropy tilting can influence the DW motion in a controllable way. We demonstrate a method to perform all-electrical logic operations using such a system. Ferromagnetic coupling between neighboring magnetic domains induced by the electric-field-controlled strain has been exploited to promote noncollinear spin alignment, which is used for realizing essential building blocks, including DW generation, propagation, and pinning, in all implementations of Boolean logic, which will pave the way for scalable memory-in-logic applications.

8.
Small ; 19(41): e2303539, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287389

ABSTRACT

On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..

9.
EMBO Rep ; 22(12): e52124, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34647680

ABSTRACT

This study explores the role of the long noncoding RNA (LncRNA) CRNDE in cisplatin (CDDP) resistance of gastric cancer (GC) cells. Here, we show that LncRNA CRNDE is upregulated in carcinoma tissues and tumor-associated macrophages (TAMs) of GC patients. In vitro experiments show that CRNDE is enriched in M2-polarized macrophage-derived exosomes (M2-exo) and is transferred from M2 macrophages to GC cells via exosomes. Silencing CRNDE in M2-exo reverses the promotional effect of M2-exo on cell proliferation in CDDP-treated GC cells and homograft tumor growth in CDDP-treated nude mice. Mechanistically, CRNDE facilitates neural precursor cell expressed developmentally downregulated protein 4-1 (NEDD4-1)-mediated phosphatase and tensin homolog (PTEN) ubiquitination. Silencing CRNDE in M2-exo enhances the CDDP sensitivity of GC cells treated with M2-exo, which is reduced by PTEN knockdown. Collectively, these data reveal a vital role for CRNDE in CDDP resistance of GC cells and suggest that the upregulation of CRNDE in GC cells may be attributed to the transfer of TAM-derived exosomes.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cisplatin/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
10.
Mar Drugs ; 21(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36827171

ABSTRACT

Crustins are a kind of antimicrobial peptide (AMP) that exist in crustaceans. Some crustins do not have direct antimicrobial activity but exhibit in vivo defense functions against Vibrio. However, the underlying molecular mechanism is not clear. Here, the regulatory mechanism was partially revealed along with the characterization of the immune function of a type I crustin, LvCrustin I-2, from Litopenaeus vannamei. LvCrustin I-2 was mainly detected in hemocytes, intestines and gills and was apparently up-regulated after Vibrio parahaemolyticus infection. Although the recombinant LvCrustin I-2 protein possessed neither antibacterial activity nor agglutinating activity, the knockdown of LvCrustin I-2 accelerated the in vivo proliferation of V. parahaemolyticus. Microbiome analysis showed that the balance of intestinal microbiota was impaired after LvCrustin I-2 knockdown. Further transcriptome analysis showed that the intestinal epithelial barrier and immune function were impaired in shrimp after LvCrustin I-2 knockdown. After removing the intestinal bacteria via antibiotic treatment, the phenomenon of impaired intestinal epithelial barrier and immune function disappeared in shrimp after LvCrustin I-2 knockdown. This indicated that the impairment of the shrimp intestine after LvCrustin I-2 knockdown was caused by the dysbiosis of the intestinal microbiota. The present data suggest that crustins could resist pathogen infection through regulating the intestinal microbiota balance, which provides new insights into the functional mechanisms of antimicrobial peptides during pathogen infection.


Subject(s)
Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/metabolism , Immunity, Innate , Arthropod Proteins/metabolism , Intestines , Penaeidae/metabolism
11.
BMC Biol ; 20(1): 113, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562825

ABSTRACT

BACKGROUND: The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS: B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS: Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.


Subject(s)
Isopoda , Adaptation, Physiological/genetics , Animals , Body Size , Genome , Isopoda/genetics , Phylogeny
12.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175476

ABSTRACT

Leucine-rich repeat (LRR) is a structural motif has important recognition function in immune receptors, such as Tolls and NOD-like receptors (NLRs). The immune-related LRR proteins can be divided into two categories, LRR-containing proteins and LRR-only proteins. The latter contain LRR motifs while they are without other functional domains. However, the functional mechanisms of the LRR-only proteins were still unclear in invertebrates. Here, we identified a gene encoding a secretory LRR-only protein, which possessed similarity with vertebrate CD14 and was designated as LvCD14L, from the Pacific whiteleg shrimp Litopenaeus vannamei. Its transcripts in shrimp hemocytes were apparently responsive to the infection of Vibrio parahaemolyticus. Knockdown of LvCD14L with dsRNA resulted in significant increase of the viable bacteria in the hepatopancreas of shrimp upon V. parahaemolyticus infection. Further functional studies revealed that LvCD14L could bind to microorganisms' PAMPs, showed interaction with LvToll1 and LvToll2, and regulated the expression of LvDorsal and LvALF2 in hemocytes. These results suggest that LvCD14L functions as a pattern recognition receptor and activates the NF-κB pathway through interaction with LvTolls. The present study reveals a shrimp LvCD14L-Tolls-NF-κB signaling pathway like the CD14/TLR4/NF-κB signaling pathway in mammalians, which enriches the functional mechanism of secretory LRR-only immune receptors during pathogens infection in invertebrates.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , Animals , NF-kappa B/metabolism , Arthropod Proteins/genetics , Signal Transduction , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Vibrio parahaemolyticus/metabolism , Immunity, Innate/genetics , Mammals/metabolism
13.
J Sci Food Agric ; 103(6): 2904-2913, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36698261

ABSTRACT

BACKGROUND: The interaction between emulsified substances and lipids generates an emulsification system during the extraction of microalgae edible oil by aqueous enzymatic method. This study aimed to resolve the dynamics of interfacial protein adsorption during the extraction of microalgae oil at different enzymatic times and the effect on the stability of the interfacial membrane formed by the proteins based on interfacial effects. RESULTS: At 1.5 h of enzymatic hydrolysis, the molecular weights of the proteins/peptides were all below 35 kD. In addition, the protein-peptide structure was loose, with the lowest number of disulfide bonds, peak surface hydrophobicity, the highest number of residues, and disordered lipid acyl arrangement. At the same time, the physical stability of the emulsion was the lowest, and the interfacial membrane rupture was distinct. On excessive enzymatic hydrolysis (at 3.0 h), a more uniform interfacial membrane was re-formed on the lipid surface. CONCLUSION: Protein is the main emulsifying substance in the emulsification system. The addition of protease affects the stability of the interfacial membrane formed by proteins. In addition, sufficient enzymatic hydrolysis (1.5 h) inhibited emulsification, while excessive enzymatic hydrolysis (3.0 h) promoted emulsification. © 2023 Society of Chemical Industry.


Subject(s)
Emulsions , Endopeptidases , Lipids/chemistry , Water/chemistry , Hydrolysis , Peptides/chemistry , Peptides/metabolism , Emulsions/chemistry
14.
Angew Chem Int Ed Engl ; 62(42): e202310238, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37665568

ABSTRACT

Photosynthesis offers a green approach for the recycling of nicotinamide cofactors primarily NADH in bio-redox reactions. Herein, we report an NADH photosynthesis system where the oxidation of biomass derivatives is designed as an electron supply module (ESM) to afford electrons and superoxide dismutase/catalase (SOD/CAT) cascade catalysis is designed as a reactive oxygen species (ROS) elimination module (REM) to inhibit NADH degradation. Glucose as the electron donor guarantees the reaction sustainability accompanied with oxidative products of gluconic acid and formic acid. Meanwhile, enzyme cascades of SOD/CAT greatly eliminate ROS, leading to a ≈2.00-fold elevation of NADH yield (61.1 % vs. 30.7 %). The initial reaction rate and turnover frequency (TOF) increased by 2.50 times and 2.54 times, respectively, compared with those systems without REM. Our study establishes a novel and efficient platform for NADH photosynthesis coupled to biomass-to-chemical conversion.

15.
J Am Chem Soc ; 144(9): 4168-4177, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35107007

ABSTRACT

Enzyme-photocoupled catalytic systems (EPCSs), combining the natural enzyme with a library of semiconductor photocatalysts, may break the constraint of natural evolution, realizing sustainable solar-to-chemical conversion and non-natural reactivity of the enzyme. The overall efficiency of EPCSs strongly relies on the shuttling of energy-carrying molecules, e.g., NAD+/NADH cofactor, between active centers of enzyme and photocatalyst. However, few efforts have been devoted to NAD+/NADH shuttling. Herein, we propose a strategy of constructing a thylakoid membrane-inspired capsule (TMC) with fortified and tunable NAD+/NADH shuttling to boost the enzyme-photocoupled catalytic process. The apparent shuttling number (ASN) of NAD+/NADH for TMC could reach 17.1, ∼8 times as high as that of non-integrated EPCS. Accordingly, our TMC exhibits a turnover frequency (TOF) of 38 000 ± 365 h-1 with a solar-to-chemical efficiency (STC) of 0.69 ± 0.12%, ∼6 times higher than that of non-integrated EPCS.


Subject(s)
NAD , Semiconductors , Capsules , Catalysis , NAD/chemistry
16.
Proc Biol Sci ; 289(1982): 20221535, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100022

ABSTRACT

The calcareous shell and sessile lifestyle are the representative phenotypes of many molluscs, which happen to be present in barnacles, a group of unique crustaceans. The origin of these phenotypes is unclear, but it may be embodied in the convergent genetics of such distant groups (interphylum). Herein, we perform comprehensive comparative genomics analysis in barnacles and molluscs, and reveal a genome-wide strong convergent molecular evolution between them, including coexpansion of biomineralization and organic matrix genes for shell formation, and origination of lineage-specific orphan genes for settlement. Notably, the expanded biomineralization gene encoding alkaline phosphatase evolves a novel, highly conserved motif that may trigger the origin of barnacle shell formation. Unlike molluscs, barnacles adopt novel organic matrices and cement proteins for shell formation and settlement, respectively, and their calcareous shells have potentially originated from the cuticle system of crustaceans. Therefore, our study corroborates the idea that selection pressures driving convergent evolution may strongly act in organisms inhabiting similar environments regardless of phylogenetic distance. The convergence signatures shed light on the origin of the shell and sessile lifestyle of barnacles and molluscs. In addition, notable non-convergence signatures are also present and may contribute to morphological and functional specificities.


Subject(s)
Thoracica , Animals , Evolution, Molecular , Genome , Mollusca/genetics , Phylogeny , Thoracica/genetics
17.
Brief Bioinform ; 21(3): 982-995, 2020 05 21.
Article in English | MEDLINE | ID: mdl-31157855

ABSTRACT

5-Methylcytosine (m5C) plays an extremely important role in the basic biochemical process. With the great increase of identified m5C sites in a wide variety of organisms, their epigenetic roles become largely unknown. Hence, accurate identification of m5C site is a key step in understanding its biological functions. Over the past several years, more attentions have been paid on the identification of m5C sites in multiple species. In this work, we firstly summarized the current progresses in computational prediction of m5C sites and then constructed a more powerful and reliable model for identifying m5C sites. To train the model, we collected experimentally confirmed m5C data from Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Arabidopsis thaliana, and compared the performances of different feature extraction methods and classification algorithms for optimizing prediction model. Based on the optimal model, a novel predictor called iRNA-m5C was developed for the recognition of m5C sites. Finally, we critically evaluated the performance of iRNA-m5C and compared it with existing methods. The result showed that iRNA-m5C could produce the best prediction performance. We hope that this paper could provide a guide on the computational identification of m5C site and also anticipate that the proposed iRNA-m5C will become a powerful tool for large scale identification of m5C sites.


Subject(s)
5-Methylcytosine/metabolism , Computational Biology/methods , Algorithms , Animals , Arabidopsis/metabolism , Datasets as Topic , Humans , Mice , Saccharomyces cerevisiae/metabolism
18.
J Pediatr ; 248: 39-45.e2, 2022 09.
Article in English | MEDLINE | ID: mdl-35660494

ABSTRACT

OBJECTIVE: To identify neonates with severe anemia at birth, defined by a hemoglobin or hematocrit value within the first 6 hours after birth that plotted below the 1st percentile according to gestational age. For each patient, we retrospectively determined whether caregivers recognized the anemia within the first 24 hours after birth and the probable cause and outcome of anemia. STUDY DESIGN: This was a retrospective cohort analysis of Intermountain Healthcare population-based data from neonates born between January 2011 and December 2020 who had a hemoglobin or hematocrit value measured within the first 6 hours after birth below the 1st percentile lower reference interval (hematocrit ∼35% in near-term/term neonates). RESULT: Among 299 927 live births, we identified 344 neonates with severe anemia at birth. In 191 of these neonates (55.5%), the anemia was recognized by caregivers during the first 24 hours. Anemia was more likely to be recorded as a problem (85%) if the hemoglobin was ≥2 g/dL below the 1st percentile (P < .001). The lowest hemoglobin values occurred in those in whom hemorrhage was the probable cause (P < .013 vs hemolysis and P < .001 vs hypoproduction, mixed cause, or indeterminant.) Treatment was provided to 39.5%. A retrospective review suggested that mixed mechanisms, particularly hemorrhagic plus hemolytic, occurred more commonly than was recognized at the time of occurrence. CONCLUSIONS: Severe anemia at birth often went unrecognized on the first day of life. Algorithm-directed retrospective reviews commonly identified causes that were not listed in the medical record. We postulate that earlier recognition and more accurate diagnoses would be facilitated by an electronic medical record-associated hemoglobin/hematocrit gestational age nomogram.


Subject(s)
Anemia , Anemia/epidemiology , Gestational Age , Hemoglobins , Humans , Incidence , Infant, Newborn , Retrospective Studies
19.
Opt Express ; 30(18): 33222-33228, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242367

ABSTRACT

In this paper, a chiral excitation method based on the asymmetric interface condition is proposed. The chiral characteristics of the metamaterials are affected by the difference in the environmental parameters of the front and rear surfaces. Thus, the device can achieve functional reconfiguration and two applications based on this mechanism are presented, one for sensing and the other for chiral switching. At the same time, a self-calibration measurement method that greatly simplifies the sensing system is proposed. These results have potential applications in the fields of chirality excitation, bio-sensing, and reconfigurable device.

20.
J Phys Chem A ; 126(27): 4444-4450, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35792496

ABSTRACT

By using the 1 + 1' near-threshold ionization velocity map ion imaging technique, state-to-state reactive differential cross sections have been measured for the H + HD → H2 + D reaction. High-resolution images of the D products, with the rotational states of the H2 co-products clearly resolved, were acquired at the collision energies of 0.60 and 1.26 eV, respectively. It is found that the angular distribution is predominantly backward-scattering at the collision energy of 0.60 eV. However, at 1.26 eV, where the collision energy is higher, the angular distribution becomes forward-backward-scattering. Notably, at both collision energies, the main peaks of backward-scattered products gradually shift from backward toward sideways direction as the rotational quantum number of H2 increases. Moreover, in the forward direction, fast angular oscillations, which are induced by specific partial waves have also been observed at 1.26 eV. These features show a strong correlation between the product states and angular distributions and also indicate the unique role of partial waves in quantum reactive scattering.

SELECTION OF CITATIONS
SEARCH DETAIL