ABSTRACT
AIMS: To date, stroke remains one of the leading causes of death and disability worldwide. Nearly three-quarters of all strokes occur in the elderly (>65 years old), and a vast majority of these individuals develop debilitating cognitive impairments that can later progress into dementia. Currently, there are no therapies capable of reversing the cognitive complications which arise following a stroke. Instead, current treatment options focus on preventing secondary injuries, as opposed to improving functional recovery. METHODS: We reconstituted aged (20-month old) mice with Sca-1+ bone marrow (BM) hematopoietic stem cells isolated from aged or young (2-month old) EGFP+ donor mice. Three months later the chimeric aged mice underwent cerebral ischemia/reperfusion by bilateral common carotid artery occlusion (BCCAO), after which cognitive function was evaluated. Immunohistochemical analysis was performed to evaluate host and recipient cells in the brain following BCCAO. RESULTS: Young Sca-1+ cells migrate to the aged brain and give rise to beneficial microglial-like cells that ameliorate stroke-induced loss of cognitive function on tasks targeting the hippocampus and cerebellum. We also found that young Sca-1+ cell-derived microglial-like cells possess neuroprotective properties as they do not undergo microgliosis upon migrating to the ischemic hippocampus, whereas the cells originating from old Sca-1+ cells proliferate extensively and skew toward a pro-inflammatory phenotype following injury. CONCLUSIONS: This study provides a proof-of-principle demonstrating that young BM Sca-1+ cells play a pivotal role in reversing stroke-induced cognitive impairments and protect the aged brain against secondary injury by attenuating the host cell response to injury.
Subject(s)
Brain Ischemia , Stroke , Animals , Bone Marrow Cells , Brain Ischemia/complications , Hippocampus , Mice , Stem Cells , Stroke/complicationsABSTRACT
Prevention of infarct scar thinning and dilatation and stimulation of scar contracture can prevent progressive heart failure. Since microRNA 145 (miR-145) plays an important role in cardiac fibroblast response to wound healing and cardiac repair after an myocardial infarction (MI), using a miR-145 knock-out (KO) mouse model, we evaluated contribution of down-regulation of miR-145 to cardiac fibroblast and myofibroblast function during adverse cardiac remodelling. Cardiac function decreased more and the infarct size was larger in miR-145 KO than that in WT mice after MI and this phenomenon was accompanied by a decrease in cardiac fibroblast-to-myofibroblast differentiation. Quantification of collagen I and α-SMA protein levels as well as wound contraction revealed that transdifferentiation of cardiac fibroblasts into myofibroblasts was lower in KO than WT mice. In vitro restoration of miR-145 induced more differentiation of fibroblasts to myofibroblasts and this effect involved the target genes Klf4 and myocardin. MiR-145 contributes to infarct scar contraction in the heart and the absence of miR-145 contributes to dysfunction of cardiac fibroblast, resulting in greater infarct thinning and dilatation. Augmentation of miR-145 could be an attractive target to prevent adverse cardiac remodelling after MI by enhancing the phenotypic switch of cardiac fibroblasts to myofibroblasts.
Subject(s)
Cell Differentiation , MicroRNAs/antagonists & inhibitors , Myocardial Infarction/physiopathology , Myofibroblasts/pathology , Wound Healing , Animals , Cell Transdifferentiation , Cells, Cultured , Kruppel-Like Factor 4 , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Myofibroblasts/metabolismABSTRACT
BACKGROUND: Radiotherapy is widely used and effective for treating brain tumours, but inevitably impairs cognition as it arrests cellular processes important for learning and memory. This is particularly evident in the aged brain with limited regenerative capacity, where radiation produces irreparable neuronal damage and activation of neighbouring microglia. The latter is responsible for increased neuronal death and contributes to cognitive decline after treatment. To date, there are few effective means to prevent cognitive deficits after radiotherapy. METHODS: Here we implanted hematopoietic stem cells (HSCs) from young or old (2- or 18-month-old, respectively) donor mice expressing green fluorescent protein (GFP) into old recipients and assessed cognitive abilities 3 months post-reconstitution. RESULTS: Regardless of donor age, GFP+ cells homed to the brain of old recipients and expressed the macrophage/microglial marker, Iba1. However, only young cells attenuated deficits in novel object recognition and spatial memory and learning in old mice post-irradiation. Mechanistically, old recipients that received young HSCs, but not old, displayed significantly greater dendritic spine density and long-term potentiation (LTP) in CA1 neurons of the hippocampus. Lastly, we found that GFP+/Iba1+ cells from young and old donors were differentially polarized to an anti- and pro-inflammatory phenotype and produced neuroprotective factors and reactive nitrogen species in vivo, respectively. CONCLUSION: Our results suggest aged peripherally derived microglia-like cells may exacerbate cognitive impairments after radiotherapy, whereas young microglia-like cells are polarized to a reparative phenotype in the irradiated brain, particularly in neural circuits associated with rewards, learning, and memory. These findings present a proof-of-principle for effectively reinstating central cognitive function of irradiated brains with peripheral stem cells from young donor bone marrow.
Subject(s)
Cognitive Dysfunction/therapy , Hematopoietic Stem Cell Transplantation , Maze Learning/physiology , Radiotherapy/adverse effects , Recovery of Function/physiology , Animals , Behavior, Animal/physiology , Cognitive Dysfunction/etiology , Dendritic Spines/physiology , Hippocampus/physiology , Humans , Long-Term Potentiation/physiology , Memory/physiology , Mice , Neurons/physiology , Spinocerebellar Ataxias/genetics , Treatment OutcomeABSTRACT
BACKGROUND: Cardiac repair depends on angiogenesis and cell proliferation. Previously we identified Canopy 2 (CNPY2) as a secreted angiogenic growth factor which promotes neovascularization. We investigated the role of CNPY2 in cardiac repair following myocardial infarction (MI) and the possible mediators involved using Cnpy2 knockout (KO) mice and human cardiac tissue. METHODS AND RESULTS: Cardiac tissue from patients with end-stage heart failure had significantly lower endogenous CNPY2 expression compared to samples from control patients. CNPY2 expression in mouse hearts significantly decreased following MI. Significantly less leukocyte and endothelial cell proliferation was found in Cnpy2 KO than wild-type (WT) mice post MI which contributed to impaired angiogenesis, tissue repair, and decreased cardiac function (fractional shortening: WT: 21.1⯱â¯2.1% vs. KO: 16.4⯱â¯1.6%, pâ¯<â¯.01 at day 28 post MI). RT-qPCR revealed significantly increased p16INK4a expression in Cnpy2 KO mouse hearts (WT: 1.0⯱â¯0.04 vs. KO: 2.33⯱â¯0.11 [relative expression of p16 INK4a], pâ¯<â¯.01) which was confirmed by immunostaining (WT: 8.47⯱â¯1.22 vs. KO: 12.9⯱â¯1.22 [% total cells], pâ¯<â¯.05) for the p16INK4a protein. Expression of cell cycle-related proteins, cyclin D1, cyclin-dependent kinases 4 and 6, and phosphorylated retinoblastoma protein (pRb) was significantly decreased in Cnpy2 KO mouse hearts. The up-regulation of the p16INK4a/cyclin D1/Rb pathway by knockout of Cnpy2 was accompanied by attenuation of PDK1/Akt phosphorylation. MI exacerbated the detrimental effects of p16INK4a on tissue repair in Cnpy2 KO mice. Overexpression of CNPY2 in the cardiac tissue of transgenic mice reversed the inhibition of cell proliferation through suppression of the p16INK4a pathway. CONCLUSIONS: Cardiac injury and progressive heart failure were associated with decreased CNPY2 levels in both humans and mice. Knockout of Cnpy2 resulted in up-regulation of p16INK4a which impaired cardiac function and tissue repair. These data suggest that CNPY2 is an important regulator of p16INK4a and promotes cell proliferation and tissue repair through inhibition of the p16INK4a pathway. CNPY2 treatment may offer a new approach to restore cardiac function after an MI.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Heart/physiology , Myocardium/metabolism , Signal Transduction/genetics , Animals , Cell Proliferation/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic/genetics , Phosphorylation/genetics , Up-Regulation/geneticsABSTRACT
Bicuspid aortic valve (BAV) disease is a congenital abnormality that is associated with ascending aortic aneurysm yet many of the molecular mechanisms remain unknown. To identify novel molecular mechanisms of aneurysm formation we completed microarray analysis of the proximal (severely dilated) and distal (less dilated) regions of the ascending aorta from five patients with BAV. We identified 180 differentially expressed genes, 40 of which were validated by RT-qPCR. Most genes had roles in inflammation and endothelial cell function including cytokines and growth factors, cell surface receptors and the Activator Protein 1 (AP-1) transcription factor family (FOS, FOSB and JUN) which was chosen for further study. AP-1 was differentially expressed within paired BAV aneurysmal samples (nâ¯=â¯8) but not Marfan patients (nâ¯=â¯5). FOS protein was significantly enriched in BAV aortas compared to normal aortas but unexpectedly, ERK1/2 activity, an upstream regulator of FOS was reduced. ERK1/2 activity was restored when BAV smooth muscle cells were cultured in vitro. An mRNA-miRNA network within paired patient samples identified AP-1 as a central hub of miRNA regulation. FOS knockdown in BAV SMCs increased expression of miR-27a, a stretch responsive miRNA. AP-1 and miR-27a were also dysregulated in a mouse model of aortic constriction. In summary, this study identified a central role for AP-1 signaling in BAV aortic dilatation by using paired mRNA-miRNA patient sample. Upstream analysis of AP-1 regulation showed that the ERK1/2 signaling pathway is dysregulated and thus represents a novel chain of mediators of aortic dilatation in BAV which should be considered in future studies.
Subject(s)
Aortic Aneurysm/pathology , Aortic Diseases/pathology , Aortic Valve/abnormalities , Biomarkers/metabolism , Dilatation, Pathologic/pathology , Heart Valve Diseases/pathology , Animals , Aortic Aneurysm/genetics , Aortic Aneurysm/metabolism , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Valve/physiopathology , Bicuspid Aortic Valve Disease , Dilatation, Pathologic/genetics , Dilatation, Pathologic/metabolism , Disease Progression , Female , Gene Expression Profiling , Heart Valve Diseases/genetics , Heart Valve Diseases/metabolism , Heart Valve Diseases/physiopathology , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Signal TransductionABSTRACT
Retinal ganglion cell apoptosis and optic nerve degeneration are prevalent in aged patients, which may be related to the decrease in bone marrow (BM) stem cell number/function because of the possible cross-talk between the two organs. This pathological process is accelerated by retinal ischaemia-reperfusion (I/R) injury. This study investigated whether young BM stem cells can regenerate and repair the aged retina after acute I/R injury. Young BM stem cell antigen 1 positive (Sca-1+ ) or Sca-1- cells were transplanted into lethally irradiated aged recipient mice to generate Sca-1+ and Sca-1- chimaeras, respectively. The animals were housed for 3 months to allow the young Sca-1 cells to repopulate in the BM of aged mice. Retinal I/R was then induced by elevation of intraocular pressure. Better preservation of visual function was found in Sca-1+ than Sca-1- chimaeras 7 days after injury. More Sca-1+ cells homed to the retina than Sca-1- cells and more cells differentiated into glial and microglial cells in the Sca-1+ chimaeras. After injury, Sca-1+ cells in the retina reduced host cellular apoptosis, which was associated with higher expression of fibroblast growth factor 2 (FGF2) in the Sca-1+ chimaeras. Young Sca-1+ cells repopulated the stem cells in the aged retina and diminished cellular apoptosis after acute I/R injury through FGF2 and Akt signalling pathways.
Subject(s)
Antigens, Ly/genetics , Fibroblast Growth Factor 2/genetics , Membrane Proteins/genetics , Reperfusion Injury/therapy , Stem Cell Transplantation , Aging/metabolism , Aging/pathology , Animals , Apoptosis/genetics , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Gene Expression Regulation, Developmental , Humans , Mice , Optic Nerve/metabolism , Optic Nerve/pathology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Retina/growth & development , Retina/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathologyABSTRACT
Recruitment of stem cells from the bone marrow (BM) is an important aspect of cardiac healing that becomes inefficient with age. We investigated the role of young stem cell antigen 1 (Sca-1)-positive BM cells on the aged heart by microarray analysis after BM reconstitution. Sca-1+ and Sca-1- BM cells from young green fluorescent protein (GFP)-positive mice were used to reconstitute the BM of aged mice. Myocardial infarction (MI) was induced 3 mo later. GFP+ cells were more abundant in the BM, blood, and heart of Sca-1+ mice, which corresponded to preserved cardiac function after MI. At baseline, Sca-1+ BM reconstitution increased cardiac expression of serum response factor, vascular endothelial growth factor A, and myogenic genes, but reduced the expression of Il-1ß. After MI, inflammation was identified as a key difference between Sca-1- and Sca-1+ groups, as cytokine expression and cell surface markers associated with inflammatory cells were up-regulated with Sca-1+ reconstitution. Mac-3 and F4/80 staining showed that the postinfarction heart was composed of a mixture of GFP+ (donor) macrophages, GFP- (host) macrophages, and GFP+ cells that did not contribute to the macrophage population. This study demonstrates that Sca-1+ BM cells regulate cardiac healing though an acute inflammatory response and also before injury by stimulating formation of a beneficial cardiac niche.-Tobin, S. W., Li, S.-H., Li, J., Wu, J., Yeganeh, A., Yu, P., Weisel, R. D., Li, R.-K. Dual roles for bone marrow-derived Sca-1 cells in cardiac function.
Subject(s)
Bone Marrow Cells/physiology , Gene Expression Regulation/physiology , Myocardium/metabolism , Stem Cells/physiology , Transcription, Genetic/physiology , Animals , Cell Line , Green Fluorescent Proteins , Heart Diseases/metabolism , Inflammation/metabolism , Mice , Up-RegulationABSTRACT
Ischemic cardiac injury is the main contributor to heart failure, and the regenerative capacity of intrinsic stem cells plays an important role in tissue repair after injury. However, stem cells in aged individuals have reduced regenerative potential and aged tissues lack the capacity to renew. Growth differentiation factor 11 (GDF11), from the activin-transforming growth factor ß superfamily, has been shown to promote stem cell activity and rejuvenation. We carried out non-invasive targeted delivery of the GDF11 gene to the heart using ultrasound-targeted microbubble destruction (UTMD) and cationic microbubble (CMB) to investigate the ability of GDF11 to rejuvenate the aged heart and improve tissue regeneration after injury. Young (3 months) and old (21 months) mice were used to evaluate the expression of GDF11 mRNA in the myocardium at baseline and after ischemia/reperfusion (I/R) and myocardial infarction. GDF11 expression decreased with age and following myocardial injury. UTMD-mediated delivery of the GDF11 plasmid to the aged heart after I/R injury effectively and selectively increased GDF11 expression in the heart, and improved cardiac function and reduced infarct size. Over-expression of GDF11 decreased senescence markers, p16 and p53, as well as the number of p16+ cells in old mouse hearts. Furthermore, increased proliferation of cardiac stem cell antigen 1 (Sca-1+) cells and increased homing of endothelial progenitor cells and angiogenesis in old ischemic hearts occurred after GDF11 over-expression. Repetitive targeted delivery of the GDF11 gene via UTMD can rejuvenate the aged mouse heart and protect it from I/R injury.
Subject(s)
Aging/genetics , Bone Morphogenetic Proteins/genetics , Growth Differentiation Factors/genetics , Heart/physiology , Myocardial Reperfusion Injury , Animals , Bone Morphogenetic Proteins/administration & dosage , Disease Models, Animal , Gene Expression Profiling , Genetic Therapy/methods , Growth Differentiation Factors/administration & dosage , Mice , Mice, Inbred C57BL , Microbubbles , Myocardium , Regeneration , TranscriptomeABSTRACT
BACKGROUND: Mast cells (MCs) dynamically participate in wound healing after myocardial infarction (MI) by releasing cytokines. Indeed, MC-deficient mice undergo rapid left ventricular dilation post-MI. Mesenchymal stem cells (MSCs) are recruited to the injured region following an MI and have potential for cardiac repair. In the current study, we evaluate the effect of MCs on MSC proliferation and myogenic differentiation. METHODS AND RESULTS: MCs were cultured from mouse bone marrow and MC granulate (MCG) was extracted from MCs via freeze-thaw cycles followed by filtration. α-SMA (smooth muscle actin) expression was examined as an indicator of myogenic differentiation. MSC/MC co-culture resulted in decreased MSC differentiation indicated by α-SMA suppression in MSCs. MCG also suppressed α-SMA expression and increased MSC migration and proliferation in a dose-dependent manner. Removal of MCG rescued α-SMA expression and MSC differentiation. Platelet derived growth factor (PDGF) receptor blockade using AG1296 also rescued MSC differentiation even after MCG treatment. Real-time PCR and Western blot showed that MCG exerted its effects on MSCs via downregulation of miR-145 and miR-143, downregulation of myocardin, upregulation of Klf4, and increased Erk and Elk1 phosphorylation. CONCLUSIONS: MCs promote MSC proliferation and migration by suppressing their myogenic differentiation. MCs accomplish this via activation of the PDGF pathway, downregulation of miR-145/143, and modulation of the myocardin-Klf4 axis. These data suggest a potential role for MSC/MC interaction in the infarcted heart where MCs may inhibit MSCs from differentiation and promote their proliferation whereby increased cardiac MSC accumulation promotes eventual cardiac regeneration after MCs cease activity.
Subject(s)
Cell Differentiation , Mast Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Actins/genetics , Actins/metabolism , Animals , Biomarkers , Cell Movement , Cell Proliferation , Coculture Techniques , Cytoplasmic Granules/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Immunophenotyping , Kruppel-Like Factor 4 , Male , Mesenchymal Stem Cell Transplantation , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Phosphorylation , Platelet-Derived Growth Factor/metabolism , Regeneration , Signal Transduction , ets-Domain Protein Elk-1/metabolismABSTRACT
BACKGROUND: Efficient cardiac function requires synchronous ventricular contraction. After myocardial infarction, the nonconductive nature of scar tissue contributes to ventricular dysfunction by electrically uncoupling viable cardiomyocytes in the infarct region. Injection of a conductive biomaterial polymer that restores impulse propagation could synchronize contraction and restore ventricular function by electrically connecting isolated cardiomyocytes to intact tissue, allowing them to contribute to global heart function. METHODS AND RESULTS: We created a conductive polymer by grafting pyrrole to the clinically tested biomaterial chitosan to create a polypyrrole (PPy)-chitosan hydrogel. Cyclic voltammetry showed that PPy-chitosan had semiconductive properties lacking in chitosan alone. PPy-chitosan did not reduce cell attachment, metabolism, or proliferation in vitro. Neonatal rat cardiomyocytes plated on PPy-chitosan showed enhanced Ca(2+) signal conduction in comparison with chitosan alone. PPy-chitosan plating also improved electric coupling between skeletal muscles placed 25 mm apart in comparison with chitosan alone, demonstrating that PPy-chitosan can electrically connect contracting cells at a distance. In rats, injection of PPy-chitosan 1 week after myocardial infarction decreased the QRS interval and increased the transverse activation velocity in comparison with saline or chitosan, suggesting improved electric conduction. Optical mapping showed increased activation in the border zone of PPy-chitosan-treated rats. Echocardiography and pressure-volume analysis showed improvement in load-dependent (ejection fraction, fractional shortening) and load-independent (preload recruitable stroke work) indices of heart function 8 weeks after injection. CONCLUSIONS: We synthesized a biocompatible conductive biomaterial (PPy-chitosan) that enhances biological conduction in vitro and in vivo. Injection of PPy-chitosan better maintained heart function after myocardial infarction than a nonconductive polymer.
Subject(s)
Biocompatible Materials/administration & dosage , Electric Conductivity , Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Myocardial Infarction/therapy , Polymers/administration & dosage , Animals , Animals, Newborn , Biocompatible Materials/chemistry , Cells, Cultured , Chitosan/administration & dosage , Chitosan/chemistry , Electric Conductivity/therapeutic use , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Myocardial Infarction/physiopathology , Polymers/chemistry , Pyrroles/administration & dosage , Pyrroles/chemistry , Rats , Rats, Sprague-DawleyABSTRACT
Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine.
Subject(s)
Heart/physiopathology , Regeneration , Stem Cell Transplantation , Stem Cells/cytology , Stem Cells/immunology , Uterus/cytology , Animals , Antigens, Ly/metabolism , Cell Survival/genetics , Cicatrix/complications , Cicatrix/pathology , Coculture Techniques , Extracellular Matrix/metabolism , Female , Gene Expression Regulation , Heart Function Tests , Histocompatibility Antigens Class I/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Myocardial Infarction/complications , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocardium/pathology , Neovascularization, Physiologic/genetics , Transplantation, Homologous , Wound Healing/geneticsABSTRACT
Multiple mechanisms contribute to progressive cardiac dysfunction after myocardial infarction (MI) and inflammation is an important mediator. Mast cells (MCs) trigger inflammation after MI by releasing bio-active factors that contribute to healing. c-Kit-deficient (Kit(W/W-v) ) mice have dysfunctional MCs and develop severe ventricular dilatation post-MI. We explored the role of MCs in post-MI repair. Mouse wild-type (WT) and Kit(W/W-v) MCs were obtained from bone marrow (BM). MC effects on fibroblasts were examined in vitro by proliferation and gel contraction assays. MCs were implanted into infarcted mouse hearts and their effects were evaluated using molecular, cellular and cardiac functional analyses. In contrast to WT, Kit(W/W-v) MC transplantation into Kit(W/W-v) mice did not improve cardiac function or scar size post-MI. Kit(W/W-v) MCs induced significantly reduced fibroblast proliferation and contraction compared to WT MCs. MC influence on fibroblast proliferation was Basic fibroblast growth factor (bFGF)-dependent and MC-induced fibroblast contractility functioned through transforming growth factor (TGF)-ß. WT MCs transiently rescue cardiac function early post-MI, but the benefits of BM cell implantation lasted longer. MCs induced increased inflammation compared to the BM-injected mice, with increased neutrophil infiltration and infarct tumour necrosis factor-α (TNF-α) concentration. This augmented inflammation was followed by increased angiogenesis and myofibroblast formation and reduced scar size at early time-points. Similar to the functional data, these beneficial effects were transient, largely vanishing by day 28. Dysfunctional Kit(W/W-v) MCs were unable to rescue cardiac function post-MI. WT MC implantation transiently enhanced angiogenesis and cardiac function. These data suggest that increased inflammation is beneficial to cardiac repair, but these effects are not persistent.
Subject(s)
Inflammation/metabolism , Mast Cells/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Animals , Blood Vessels/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Enzyme-Linked Immunosorbent Assay , Fibroblast Growth Factor 2/metabolism , Fibroblasts/metabolism , Flow Cytometry , Inflammation/physiopathology , Inflammation/therapy , Mast Cells/transplantation , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocardium/pathology , Myofibroblasts/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolismABSTRACT
BACKGROUND: The clinical significance of microRNAs (miRNAs) in intrahepatic cholangiocarcinoma (ICC) is unclear. The objective of this study is to examine the miRNA expression profiles and identify a miRNA signature for the prognosis of ICC. METHODS: Using a custom microarray containing 1,094 probes, the miRNA expression profiles of 63 human ICCs and nine normal intrahepatic bile ducts (NIBD) were assessed. The miRNA signatures were established and their clinical significances in ICC were analyzed. The expression levels of some miRNAs were verified by quantitative real-time RT-PCR (qRT-PCR). RESULTS: Expression profile analysis showed 158 differentially expressed miRNAs between ICC and NIBD, with 77 up-regulated and 81 down-regulated miRNAs. From the 158 differentially expressed miRNAs, a 30-miRNA signature consisting of 10 up-regulated and 20 down-regulated miRNAs in ICC was established for distinguishing ICC from NIBD with 100% accuracy. A separate 3-miRNA signature was identified for predicting prognosis in ICC. Based on the 3-miRNA signature, a formula was constructed to compute a risk score for each patient. The patients with high-risk had significantly lower overall survival and disease-free survival than those with low-risk. The expression level of these three miRNAs detected by microarray was verified by qRT-PCR. Multivariate analysis indicated that the 3-miRNA signature was an independent prognostic predictor. CONCLUSIONS: In this study, a 30-miRNA signature for distinguishing ICC from NIBD, and a 3-miRNA signature for evaluating prognosis of ICC were established, which might be able to serve as biomarkers for prognosis of ICC. Further studies focusing on these miRNAs may shed light on the mechanisms associated with ICC pathogenesis and progression.
Subject(s)
Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/mortality , Cholangiocarcinoma/genetics , Cholangiocarcinoma/mortality , MicroRNAs/genetics , Transcriptome , Adult , Aged , Bile Duct Neoplasms/diagnosis , Cholangiocarcinoma/diagnosis , Cluster Analysis , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Reproducibility of Results , Young AdultABSTRACT
Following a myocardial infarction (MI), fibroblasts differentiate to myofibroblasts, which possess some of the characteristics of smooth muscle cells (SMCs) and contribute to wound healing. Previous studies suggested that the miR-143/-145 cluster plays a critical role in SMC differentiation. Therefore, we determined whether miR-145 promoted differentiation of cardiac fibroblasts to myofibroblasts. Following coronary occlusion in mice, myocardial miR-145 expression was downregulated at 3 days but was restored at 7 days. In vitro studies showed that hypoxia also downregulated miR-145 in cardiac fibroblasts. The number of α-smooth muscle actin (α-SMA) positive cells in fibroblast cultures was employed to determine their transdifferentiation to cardiac myofibroblasts and was increased by 73.5% after transient transfection with miR-145. Ultrastructural analysis of α-SMA stress fibers revealed that ~95% of the α-SMA(+) cells treated with miR-145 organized their actin-filament bundles with a specific orientation compared to only 15% in the scrambled control group. This orientation of the SMA bundles and their integration with the filamentous actin fibers of the cytoskeleton permit infarct wound contraction. Structural and functional studies showed that miR-145 induced a myofibroblast phenotype, and miR-145 also potentiated the production of mature collagen by myofibroblasts. Repression of KLF5, a target of miR-145, was validated by a chimeric luciferase construct tagged with the full-length 3'-UTR of KLF5. A dramatic decrease in KLF5 and a corresponding increase in myocardin expression were observed after transfecting cultured fibroblasts with miR-145. Similar results were found in vivo: the transient decrease in miR-145 expression 3 days post-MI was associated with an increase in KLF5 and a decrease in myocardin. In addition, in vivo delivery of a miR-145 antagomir 1 day prior to and 2 and 6 days after MI decreased myofibroblast formation and increased scar size. The antagomir also reversed the suppressed expression of KLF5 protein in the scar region at day 7 after MI. In summary, we describe a novel association between miR-145 and fibroblast differentiation toward myofibroblasts. These observations provide a new approach to promote endogenous scar healing and contracture by stimulating the transdifferentiation of cardiac fibroblasts to myofibroblasts.
Subject(s)
Fibroblasts/metabolism , MicroRNAs/genetics , Myocardium/metabolism , Re-Epithelialization/physiology , Actins/genetics , Actins/metabolism , Animals , Cell Differentiation , Cell Transdifferentiation , Collagen/genetics , Collagen/metabolism , Coronary Occlusion/pathology , Coronary Vessels/surgery , Female , Fibroblasts/pathology , Gene Expression , Genes, Reporter , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Myocardium/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oligonucleotides, Antisense/genetics , Trans-Activators/genetics , Trans-Activators/metabolismABSTRACT
BACKGROUND: Allogeneic mesenchymal stem cells (MSCs) were immunoprivileged early after cardiac implantation and improved heart function in preclinical and clinical studies. However, long-term preclinical studies demonstrated that allogeneic MSCs lost their immunoprivilege and were rejected in the injured myocardium, resulting in recurrent ventricular dysfunction. This study identifies some of the mechanisms responsible for the immune switch in MSCs and suggests a new treatment to maintain immunoprivilege and preserve heart function. METHODS AND RESULTS: Rat MSC immunoprivilege was mediated by prostaglandin E2 (PGE2)-induced secretion of 2 critical chemokines, CCL12 and CCL5. These chemokines stimulated the chemoattraction of T cells toward MSCs, suppressed cytotoxic T-cell proliferation, and induced the production of T regulatory cells. MSCs treated with 5-azacytidine for 24 hours differentiated into myogenic cells after 2 weeks, which was associated with decreased PGE2 and chemokine production and the loss of immunoprivilege. Treatment of differentiated MSCs with PGE2 restored chemokine levels and preserved MSC immunoprivilege. In a rat myocardial infarction model, allogeneic MSCs (3 × 10(6) cells/rat) were injected into the infarct region with or without a biodegradable hydrogel that slowly released PGE2. Five weeks later, the transplanted MSCs expressed myogenic lineage markers and were rejected in the control group, but in the PGE2-treated group, the transplanted cells survived and heart function improved. CONCLUSIONS: Allogeneic MSCs maintained immunoprivilege by PGE2-induced secretion of chemokines CCL12 and CCL5. Differentiation of MSCs decreased PGE2 levels, and immunoprivilege was lost. Maintaining PGE2 levels preserved immunoprivilege after differentiation, prevented rejection of implanted MSCs, and restored cardiac function.
Subject(s)
Dinoprostone/metabolism , Graft Rejection/prevention & control , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Ventricular Function/physiology , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Coculture Techniques , Dinoprostone/physiology , Dinoprostone/therapeutic use , Female , Graft Rejection/metabolism , Graft Rejection/physiopathology , Male , Myocardial Infarction/pathology , Random Allocation , Rats , Rats, Inbred Lew , Rats, Wistar , Transplantation, Homologous , Ventricular Function/drug effectsABSTRACT
We aimed to investigate the role of miR-17 in cardiac matrix remodeling following myocardial infarction (MI). Using real-time PCR, we quantified endogenous miR-17 in infarcted mouse hearts. Compared with related microRNAs, miR-17 was up-regulated most dramatically: 3.7-fold and 2.4-fold in the infarct region 3 and 7 d post-MI, respectively, and 2.4-fold in the border zone at d 3 compared to sham control (P<0.01). Chimeric luciferase reporter constructs were cloned for miR-17 target validation. miR-17 targeted the 3'-UTR of TIMP2 and the protein coding region of TIMP1. The miR-17 mimic decreased TIMP2 (P<0.01) and TIMP1 (P<0.05) protein expression compared with the scrambled control. Inhibition of endogenous miR-17 by in vivo antagomir delivery enhanced TIMP2 (P<0.01) and TIMP1 (P<0.05) protein expression compared to the mismatch group, decreased MMP9 activity (P<0.05), reduced infarct size as early as 7 d post-MI (P<0.05), and improved cardiac function (fractional shortening and fractional area contraction, P<0.05) at d 21 and 28 post-MI. Transgenic mice overexpressing miR-17 in the heart confirmed the deleterious role of miR-17 in matrix modulation. Our study suggests that miR-17 participates in the regulation of cardiac matrix remodeling and provides a novel therapeutic approach using miR-17 inhibitors to prevent remodeling and heart failure after MI.
Subject(s)
MicroRNAs/metabolism , Myocardium/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Animals , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Myocardial Infarction/metabolism , Oligonucleotides , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Ventricular RemodelingABSTRACT
The present work evaluates the effects of various levels of dietary choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed with six different experimental diets containing graded levels of choline at 165 (choline-deficient control), 310, 607, 896, 1167 and 1820 mg kg(-1) diet for 65 days. At the end of the feeding trail, fish were challenged with Aeromonas hydrophila and mortalities were recorded over 17 days. Dietary choline significantly decreased malondialdehyde and protein carbonyl contents in spleen and head kidney. However, anti-superoxide anion and anti-hydroxyl radical activities in spleen and head kidney also decreased. Interestingly, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in spleen, GPx activity in head kidney, and glutathione contents in spleen and head kidney were decreased with increase of dietary choline levels up to a certain point, whereas, activities of SOD, GST and GR in head kidney showed no significantly differences among groups. Similarly, expression levels of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b and GR gene in spleen and head kidney were significantly lower in group with choline level of 607 mg kg(-1) diet than those in the choline-deficient group. The relative gene expressions of Nrf2 in head kidney and Keap1a in spleen and head kidney were decreased with increasing of dietary choline up to a certain point. However, the relative gene expression of Nrf2 in spleen were not significantly affected by dietary choline. In conclusion, dietary choline decreased the oxidant damage and regulated the antioxidant system in immune organs of juvenile Jian carp.
Subject(s)
Antioxidants/metabolism , Carps/genetics , Carps/immunology , Choline/pharmacology , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Immunity, Innate , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Carps/metabolism , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fish Proteins/metabolism , Head Kidney/drug effects , Head Kidney/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Spleen/drug effects , Spleen/metabolismABSTRACT
AIMS: The study was designed to evaluate the mechanisms of cardiac regeneration after injury and to determine how to restore that capacity in aged individuals. The adult heart retains a small population of nascent cells that have myeloid, mesenchymal, and mesodermal capabilities, which play an essential role in the recovery of ventricular function after injury. In aged individuals, these cells are diminished and dysfunctional. We evaluated the derivation of some of these cardiac progenitors and a method to restore their number and function. METHODS AND RESULTS: We first demonstrated that aged mice have fewer progenitors in both the bone marrow (BM) and the myocardium, which correlated with the extent of cardiac dysfunction after injury. Bone marrow chimerism established in aged mice with young BM donors restored both myocardial progenitors and cardiac function, but neither was restored with aged BM donors. Cardiac micro-chimerism in aged mice was established with young BM cells, which restored cardiac function after injury, even with old peripheral BM cells. The young cardiac-resident BM-derived progenitor cells in the aged myocardium persisted for at least a year, and after myocardial infarction they actively proliferated and enhanced cardiac repair through paracrine mechanisms. CONCLUSION: Bone marrow reconstitution with young BM cells in aged recipients restored progenitors in both the BM and, most importantly, the myocardium. The number and function of cardiac-resident BM-derived progenitor cells in the aged myocardium prior to injury was the major determinant for successful recovery of cardiac function. The aged heart was rejuvenated with young BM cells.
Subject(s)
Bone Marrow Cells/physiology , Bone Marrow/physiology , Heart/physiology , Myocardial Infarction/pathology , Regeneration/physiology , Stem Cells/physiology , Animals , Disease Models, Animal , Ligation , Mice , Mice, Inbred C57BL , Myoblasts, Cardiac/physiology , Myocardium/pathology , Transplantation Chimera , Ventricular DysfunctionABSTRACT
The present study explored the effects of thiamin on antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). In a 60-day feeding trial, a total of 1,050 juvenile Jian carp (8.20 ± 0.02 g) were fed graded levels of thiamin at 0.25, 0.48, 0.79, 1.06, 1.37, 1.63 and 2.65 mg thiamin kg(-1) diets. The results showed that malondialdehyde and protein carbonyl contents in serum, hepatopancreas, intestine and muscle were significantly decreased with increasing dietary thiamin levels (P < 0.05). Conversely, the anti-superoxide anion capacity and anti-hydroxyl radical capacity in serum, hepatopancreas, intestine and muscle were the lowest in fish fed the thiamin-unsupplemented diet. Meanwhile, the activities of catalase (CAT), glutathione peroxidase, glutathione S-transferase and glutathione reductase, and the contents of glutathione in serum, hepatopancreas, intestine and muscle were enhanced with increasing dietary thiamin levels (P < 0.05). Superoxide dismutase (SOD) activity in serum, hepatopancreas and intestine followed a similar trend as CAT (P < 0.05). However, SOD activity in muscle was not affected by dietary thiamin level (P > 0.05). The results indicated that thiamin could improve antioxidant defence and inhibit lipid peroxidation and protein oxidation of juvenile Jian carp.
Subject(s)
Antioxidants/metabolism , Carps/metabolism , Intestinal Mucosa/metabolism , Muscles/metabolism , Thiamine/administration & dosage , Animals , Carps/growth & development , Catalase/blood , Fish Proteins/metabolism , Glutathione/blood , Glutathione Peroxidase/blood , Glutathione Reductase/blood , Glutathione Transferase/blood , Intestinal Absorption , Malondialdehyde/blood , Protein Carbonylation , Superoxide Dismutase/blood , Thiamine/metabolismABSTRACT
The dietary lysine requirement of sub-adult grass carp (460 ± 1.5 g) was assessed by feeding diets supplemented with grade levels of lysine (6.6, 8.5, 10.8, 12.9, 15.0 and 16.7 g kg(-1) diet) for 56 days. The test diets (28% CP) contained fish meal, casein and gelatin as sources of intact protein, supplemented with crystalline amino acids. Weight gain (WG), feed intake and feed efficiency were significantly improved with increasing levels of lysine up to 12.9 g kg(-1) diet and thereafter declined (P < 0.05). Quadratic regression analysis of WG at 95% maximum response indicated lysine requirement was 10.9 g kg(-1) diet. Activities of trypsin, chymotrypsin, lipase, Na(+), K(+)-ATPase and alkaline phosphatase in intestine, creatine kinase activity in proximal and mid-intestine responded similar to WG (P < 0.05). In addition, lipid and protein oxidation decreased with increasing levels of lysine up to certain values and increased thereafter (P < 0.05); the anti-hydroxyl radical capacity, dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase (GST) activities and glutathione content were increased with increasing dietary lysine levels up to certain values in the detected tissues, except for hepatopancreatic GST. Requirement estimated on the basis of malondialdehyde content in intestine and hepatopancreas was 10.6 and 9.53 g lysine kg(-1) diet, respectively.