Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mikrochim Acta ; 190(11): 439, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845383

ABSTRACT

A novel nanocomposite material, ferric vanadate intertwined multi-walled carbon nanotubes (FeV/MWCNTs), has been designed which was drop-coated onto a glassy carbon electrode (GCE). The constructed sensor was used for the sensitive determination of uric acid (UA) in fetal bovine serum (FBS) and human serum (HS). A series of characterization and electrochemical tests showed that the ultrasound-assisted assembly of FeV with MWCNTs not only overcame the disadvantages of low conductivity and easy (unwanted) aggregation, but also avoided the decrease in effective surface area due to the severe aggregation of each individual raw material. The fabricated FeV/MWCNTs nanocomposites exhibited higher conductivity, larger effective surface area, and better electrocatalytic activity. In addition, under optimized conditions, the developed electrochemical sensor FeV/MWCNTs/GCE has a lower limit of detection (LOD, 0.05 µM; Ep = 0.268 V vs. Ag/AgCl) and wider linear range (0.20-100 µM), which can satisfy the criteria of trace UA detection. The results of UA determination in FBS (recovery = 95.5-103%; RSD ≤ 3.1%) and HS (recovery = 95.5-103%; RSD ≤ 4.3%) further validated the feasibility of FeV/MWCNTs-based electrochemical sensors for the determination of UA in biological fluids.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Humans , Nanotubes, Carbon/chemistry , Serum Albumin, Bovine , Uric Acid , Vanadates , Electrochemical Techniques/methods , Limit of Detection , Nanocomposites/chemistry , Iron
SELECTION OF CITATIONS
SEARCH DETAIL